Bài 3: Giá trị lớn nhất và giá trị nhỏ nhất của hàm số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trần T.Anh

tìm m để phương trình sau có nghiệm

\(\sqrt{1+x}+\sqrt{8-x}+\sqrt{\left(1+x\right)\left(8-x\right)}=m\)

We bare bears
8 tháng 8 2021 lúc 20:58

Vì $\sqrt{1+x}\ge 0,\sqrt{8-x}\ge 0,\sqrt{(1+x)(8-x)}\ge 0$

$\to \sqrt{1+x}+\sqrt{8-x}+\sqrt{(1+x)(8-x)}\ge 0$

mà $\sqrt{1+x}+\sqrt{8-x}+\sqrt{(1+x)(8-x)}=m$

=> m≥0

Nguyễn Thanh Hằng
8 tháng 8 2021 lúc 21:23

Đặt : 

\(t=\sqrt{1+x}+\sqrt{8-x}\) \(\left(t\ge0\right)\)

DKXĐ : \(-1\le x\le8\)

\(\Leftrightarrow t^2=9+2\sqrt{\left(1+x\right)\left(8-x\right)}\) (1) 

BBT của \(t^2\) :

 \(x\) \(-1\)                                  \(0\)                                  \(8\)
\(t^2\)

                                        \(9+2\sqrt{2}\)

\(9\)                                                                           \(9\)

\(t\)

                                        \(1+2\sqrt{2}\)

                                                                            \(1\)

          \(2\sqrt{2}\)                                                                    

 

\(\Leftrightarrow t\in\left(1,2\sqrt{2}\right)\)


Thay \(\left(1\right)\) vào pt ta có :\(\Leftrightarrow\sqrt{\left(1+x\right)\left(8-x\right)}=\dfrac{t^2-9}{2}\) (1)

\(\Leftrightarrow f\left(t\right)=t^2+2t-9=2m\)

BBT của \(f\left(t\right)\) :

 \(t\) \(1\)                                                             \(2\sqrt{2}\)
\(f\left(t\right)\)

                                                                                                                                         \(4\sqrt{2}-1\)

\(-6\)

 

\(\Leftrightarrow2m\in\left[-6;4\sqrt{2}-1\right]\)   thì pt có nghiệm 

\(\Leftrightarrow m\in\left(-3;\dfrac{-1+4\sqrt{2}}{2}\right)\)

Vẽ dùm mình mấy cái mũi tên trên BBT nhé UwU

 

 


Các câu hỏi tương tự
Trần T.Anh
Xem chi tiết
Trần T.Anh
Xem chi tiết
Nguyễn Minh Đức
Xem chi tiết
Trần T.Anh
Xem chi tiết
Trần T.Anh
Xem chi tiết
erosennin
Xem chi tiết
BongBóng
Xem chi tiết
Nguyễn Minh Đức
Xem chi tiết
Zin Như
Xem chi tiết