Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Quỳnh Như
Xem chi tiết
Big City Boy
Xem chi tiết
Nguyễn Việt Lâm
17 tháng 12 2020 lúc 2:46

\(x+y+z=0\Leftrightarrow\left(x+y+z\right)^2\)

\(\Leftrightarrow x^2+y^2+z^2=-2\left(xy+yz+zx\right)\)

\(P=\dfrac{x^2+y^2+z^2}{2\left(x^2+y^2+z^2\right)-2\left(xy+yz+zx\right)}=\dfrac{x^2+y^2+z^2}{2\left(x^2+y^2+z^2\right)+x^2+y^2+z^2}=\dfrac{1}{3}\)

hotboy
Xem chi tiết
Nguyễn Minh Quân
30 tháng 10 2016 lúc 16:07

x^2+y^2+z^2/y^2-2yx+z^2+z^2-2xy+x^2+x^2-2xy+y^2=x^2+y^2+z^2/2y^2+2x^2+2z^2-6xy=x^2+y^2+z^2/2(x^2+y^2+z^2)-6xy=1/2-6xy

Kẻ Lạnh Lùng
13 tháng 1 2019 lúc 19:52

xét mẫu ta có

=y^2 - 2yz + z^2 + z^2 -2xz + x^2 + x^2 -2xy +y^2

thêm bớt  x^2,y^2,z^2 vào mẫu ta có

=3y^2 + 3x^2 + 3z^2 - (x^2 + y^2 + z^2 + 2xy + 2yz + 2xz)

đúng không

mà (x+y+z)=0 => (x+y+z)^2=0

mà (x^2 + y^2 + z^2 + 2xy + 2yz + 2xz) phân tích ra thành (x+y+z)^2

=> (x^2 + y^2 + z^2 + 2xy + 2yz + 2xz)=0

=> (x^2 + y^2 + z^2 )/ 3(x^2 + y^2 + z^2)

rút gọn thành 1/3

nhớ k nha chuẩn 100%

Uzumaki Naruto
Xem chi tiết
Nguyễn Đình Toàn
9 tháng 11 2017 lúc 15:47

\(\frac{1}{3}\) nha bạn.

Quỳnh Mai
Xem chi tiết
Tony Tony Chopper
24 tháng 5 2017 lúc 22:04

\(=\frac{x^2+y^2+z^2}{2x^2+2y^2+2z^2-2xy-2yz-2zx}=\frac{x^2+y^2+z^2}{3\left(x^2+y^2+z^2\right)-\left(x^2+y^2+z^2+2xy+2yz+2xz\right)}\)

\(=\frac{x^2+y^2+z^2}{3\left(x^2+y^2+z^2\right)-\left(x+y+z\right)^2}=\frac{x^2+y^2+z^2}{3\left(x^2+y^2+z^2\right)}=\frac{1}{3}\)(vì x+y+z=0)

Thị Lương Hồ
24 tháng 5 2017 lúc 22:09

tách mẫu số ra được: 2(x2+y2+z2)-2(xy+yz+xz)   (1)

mà x+y+z=0

=> (x+y+z)2=0

=> x2+y2+z2= -2(xy+yz +xz)   (2)

Thay (2) vào (1) ta được mẫu số: 3(x2+y2+z2)

Phân thức khi rút gọn được là: 1/3

Phan Văn Hiếu
25 tháng 5 2017 lúc 13:19

toormk nghĩ tử là x^3+y^3+z^3 chứ

Nguyễn Ngọc Phượng
Xem chi tiết
Võ Đông Anh Tuấn
29 tháng 8 2016 lúc 11:05

\(\frac{x^2+y^2+z^2}{\left(y-z\right)^2+\left(z-x\right)^2+\left(x-y\right)^2}\)

\(=\frac{\left(x+y+z\right)^2-2\left(xy+yz+xz\right)}{2x^2+2y^2+2z^2-2xy+2yz+2xz}\)

\(=\frac{-2\left(xy+yz+xz\right)}{2\left(x+y+z\right)^2-6\left(xy+yz+xz\right)}\)

\(=-\frac{1}{3}\)

win 10 ok
Xem chi tiết
Ngọc
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 12 2020 lúc 22:46

Ta có: x+y+z=0

\(\Leftrightarrow\left(x+y+z\right)^2=0\)

\(\Leftrightarrow x^2+y^2+z^2+2xy+2yz+2xz=0\)(1)

Ta có: \(K=\dfrac{x^2+y^2+z^2}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}\)

\(=\dfrac{x^2+y^2+z^2}{x^2-2xy+y^2+y^2-2yz+z^2+z^2-2xz+x^2}\)

\(=\dfrac{x^2+y^2+z^2}{3x^2+3y^2+3z^2-x^2-y^2-z^2-2xy-2yz-2xz}\)

\(=\dfrac{x^2+y^2+z^2}{3\left(x^2+y^2+z^2\right)-\left(x^2+y^2+z^2+2xy+2yz-2xz\right)}\)

\(=\dfrac{x^2+y^2+z^2}{3\left(x^2+y^2+z^2\right)}=\dfrac{1}{3}\)

Vậy: \(K=\dfrac{1}{3}\)

Trần Minh Hoàng
19 tháng 12 2020 lúc 22:47

\(K=\dfrac{x^2+y^2+z^2}{2\left(x^2+y^2+z^2\right)-2\left(xy+yz+zx\right)}\)

\(K=\dfrac{x^2+y^2+z^2}{3\left(x^2+y^2+z^2\right)-\left(x+y+z\right)^2}=\dfrac{1}{3}\)

Nguyen Dinh Dung
Xem chi tiết