Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyên Thảo Lương
Xem chi tiết
trần
Xem chi tiết
tth_new
9 tháng 1 2019 lúc 10:05

\(\hept{\begin{cases}x+my=1\left(1\right)\\mx+y=1\left(2\right)\end{cases}}\Leftrightarrow x\left(m+1\right)+y\left(m+1\right)=2\) (cộng theo vế (1) và (2) ; tách nhân tử chung)

\(\Leftrightarrow\left(x+y\right)\left(m+1\right)=2\) (3)

Để hệ có nghiệm duy nhất thì x = y = t

Thay vào (3) \(2a\left(m+1\right)=2\Leftrightarrow a\left(m+1\right)=1\)

Mà x,y > 0 nên a = x + y > 0

Suy ra \(\hept{\begin{cases}a>0\\m+1>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y>0\\m>-1\end{cases}}\)

Vậy với m > -1 thì phương trình có nghiệm duy nhất: x,y > 0 (không chắc)

trần
9 tháng 1 2019 lúc 10:10

thấy bài này bn giải sai sai

Nguyễn Linh Chi
9 tháng 1 2019 lúc 10:26

x+my=1

=> x=1-my

Thế vào phương trình thứ 2:

 \(m\left(1-my\right)+y=1\Leftrightarrow\left(1-m^2\right)y=1-m\)(1)

+) \(1-m^2=0\Leftrightarrow m=\pm1\)

Với m=-1, phương trình (1) trở thành: o.y=2 (vô nghiệm)

Với m=1, phương trình (1) trở thành: 0.y=0 phương trình có nghiệm với mọi y

+) \(m\ne\pm1\)

phương trình (1) có nghiệm duy nhất: \(y=\frac{1}{1+m}\Rightarrow x=1-m.\frac{1}{1+m}=\frac{1}{1+m}\)

Để hệ phương trình có nghiệm duy nhất thỏa mãn x, y>0

khi đó: \(\hept{\begin{cases}1+m>0\\m\ne\pm1\end{cases}\Leftrightarrow\hept{\begin{cases}m>-1\\m\ne1\end{cases}}}\) 

Nguyễn Quốc Khánh
Xem chi tiết
Nguyễn Quang Trung
5 tháng 2 2016 lúc 16:54

mấy cái này dễ mà k lm đc à ......................................nói v thui chứ t cũng k bik làm ^^

Thắng Nguyễn
25 tháng 2 2016 lúc 23:09

a) thay m=2 ... tự thay

\(\Leftrightarrow\int^{2y+x=2\left(1\right)}_{2x-2y=1\left(2\right)}\)

=>2y+x-2=0(1)

=>-2y+2x-1=0(2)

=>-(2y-2x+1)=0(2)

=>2y-2x+1=0(2)

vẽ đồ thị hàm số ra

=>x=1;\(y=\frac{1}{2}\)hoặc 0,5

b,c ko biết nên ns thế nào ^^

Nguyễn Quốc Khánh
Xem chi tiết
Leo
5 tháng 2 2016 lúc 11:11

em mới lóp 6

thi anh
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
27 tháng 5 2017 lúc 2:12

Xét hệ 

m x + y = 3 4 x + m y = 6 ⇔ y = 3 − m x 4 x + m 3 − m x = 6 ⇔ y = 3 − m x 4 x + 3 m − m 2 x = 6 ⇔ y = 3 − m x 4 − m 2 x = 6 − 3 m ⇔ y = 3 − m x                                 1 m 2 − 4 x = 3 m − 2       2

Hệ phương trình đã cho có nghiệm duy nhất ⇔ (2) có nghiệm duy nhất

m 2 – 4 ≠ 0 ⇔ m ≠ ± 2 ( * )

Khi đó hệ đã cho có nghiệm duy nhất

⇔ x = 3 m + 2 y = 3 − 3 m m + 2 ⇔ x = 3 m + 2 y = 6 m + 2

Ta có

x > 0 y > 2 ⇔ 3 m + 2 > 0 6 m + 2 > 1 ⇔ m + 2 > 0 4 − m m + 2 > 0 ⇔ m > − 2 4 − m > 0 ⇔ m > − 2 m < 4 ⇔ − 2 < m < 4

Kết hợp với (*) ta được giá trị m cần tìm là – 2 < m < 4; m ≠ 2

Đáp án: A

phạm ngọc hà
Xem chi tiết
Lemon Candy
Xem chi tiết
phung thuy hang
Xem chi tiết
Dương Thanh Ngân
Xem chi tiết
Aurora
26 tháng 1 2021 lúc 20:13

Để hệ pt có một nghiệm duy nhất thì \(\dfrac{m}{4}\ne\dfrac{1}{m}\Leftrightarrow2m\ne4\Leftrightarrow m\ne2\)

Vũ Đình Thái
26 tháng 1 2021 lúc 20:44

 Từ pt 1 ta có: y=mx-1 thế vào pt 2 ta đc:

    4x-m(mx-1)=2

  \(\Leftrightarrow4x-m^2x+m=2\)

 \(\Leftrightarrow\left(4-m^2\right)x=2-m\)    (*)

Để hệ có nghiệm duy nhất thì pt (*) phải óc nghiệm duy nhất

    tức \(4-m^2\ne0\Leftrightarrow m^2\ne4\Leftrightarrow m\ne\pm2\)

Vây \(m\ne\pm2\) thì hệ có nghiệm duy nhất