Tìm hai số x và y, biết
x:2=y:(−5) và x−y=−7
tìm hai số tự nhiên x và y,biết
x< 17/4<y
tìm x,y thuộc z biết
x/7=9/y và x>y
\(\Leftrightarrow xy=63\)
\(\Leftrightarrow\left(x,y\right)\in\left\{\left(1;63\right);\left(3;21\right);\left(7;9\right);\left(-63;-1\right);\left(-21;-3\right);\left(-9;-7\right)\right\}\)
tìm 2 số x và y biết
x phần 3 = x cộng y = 20
\(\dfrac{x}{3}=x+y=20\Rightarrow x=60\Rightarrow60+y=20\Rightarrow y=-40\)
Ta có:
\(\dfrac{x}{3}=20\)
\(\Rightarrow\)\(x=60\)
Lại có:
\(x+y=20\)
\(\Rightarrow\)\(y=20-60\)
\(\Rightarrow\)\(y=-40\)
Vây x = 60 và y = - 40
\(\dfrac{x}{3}=x+y\)
\(\Leftrightarrow x-\dfrac{1}{3}x=-y\)
\(\Leftrightarrow y=-\dfrac{2}{3}x\)
Ta có: x+y=20
\(\Leftrightarrow x\cdot\dfrac{1}{3}=20\)
hay x=60
=> y=40
tìm quan hệ x và y biết
x\(^4\)=y\(^4\)
x\(^5\)=y\(^5\)
Ta có:
\(x^4=y^4\)
\(\Rightarrow x^4-y^4=0\)
\(\Rightarrow\left(x^2\right)^2-\left(y^2\right)^2=0\)
\(\Rightarrow\left(x^2-y^2\right)\left(x^2+y^2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x^2-y^2=0\\x^2+y^2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x-y=0\\x+y=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=y\\x=-y\end{matrix}\right.\)
_______________
Ta có:
\(x^5=y^5\)
\(\Rightarrow x^5-y^5=0\)
\(\Rightarrow x-y=0\)
\(\Rightarrow x=y\)
Tìm x,y biết
x/2=y/3 và 2x-3y=54
áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{2x}{4}=\dfrac{3y}{9}=\dfrac{2x-3y}{4-9}=-\dfrac{54}{5}\)
\(\dfrac{x}{2}=-\dfrac{54}{5}\Rightarrow x=-\dfrac{54}{5}.2=-\dfrac{108}{5}\)
\(\dfrac{y}{3}=-\dfrac{54}{5}\Rightarrow y=-\dfrac{54}{5}.3=-\dfrac{162}{5}\)
Vậy \(x=-\dfrac{108}{5};y=-\dfrac{162}{5}\)
Ta có: \(\dfrac{x}{2}=\dfrac{y}{3}\)
nên \(\dfrac{2x}{4}=\dfrac{3y}{9}\)
mà 2x-3y=54
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{2x}{4}=\dfrac{3y}{9}=\dfrac{2x-3y}{4-9}=\dfrac{-54}{5}\)
Do đó: \(x=-\dfrac{108}{5};y=-\dfrac{162}{5}\)
tìm x,y biết
x^3+y^3/6=x^3-2y^3 và x^6 .y^6
a) tìm hai số x và y biết:\(\dfrac{x}{3},\dfrac{y}{4}\) x+y=28
b)tìm hai số x và y biết: x : 2=y : (-5) và x-y=-7
a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{x+y}{3+4}=\dfrac{28}{7}=4\)
Do đó: x=12; y=16
\(a,Sửa:\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{x+y}{3+4}=\dfrac{28}{7}=4\\ \Rightarrow\left\{{}\begin{matrix}x=12\\y=16\end{matrix}\right.\\ b,\Rightarrow\dfrac{x}{2}=\dfrac{y}{-5}=\dfrac{x-y}{2+5}=\dfrac{-7}{7}=-1\\ \Rightarrow\left\{{}\begin{matrix}x=-2\\y=5\end{matrix}\right.\)
a/Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{x+y}{3+4}=\dfrac{28}{7}=4\)
=>x=4.3=12
=>y=4.4.=16
Vậy x=12 và y=16
b/Theo đề ta có:
\(\dfrac{x}{2}=\dfrac{y}{-5}\) và x-y=-7
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
\(\dfrac{x}{2}=\dfrac{y}{-5}=\dfrac{x-y}{2-\left(-5\right)}=\dfrac{-7}{7}=-1\)
=>x=-1.2=-2
=>y=-1.(-5)=5
Vậy x=-2 và y=5
tìm các số hữu tỉx,y,z biếtx(x+y+z=-5;y(x+y+z)=9;z(x+y+z)=5
a) Tìm hai số x và y biết x/3 = y/4 và x + y = 28
b) Tìm hai số x và y biết x:2 = y: (-5) và x – y = -7
Ta có: x/3 = y/4 => 4x = 3y
Mà x + y = 28 => 4(x + y) = 4.28 => 4x + 4y = 112
Do đó 3y + 4y = 112
=> 7y = 112
=> y = 112/7 = 16
=> x = 28 - 16 = 12
b, Tương tự nha bạn
a) Áp dụng t/c dtsbn
\(\frac{x}{3}=\frac{y}{4}=\frac{x+y}{3+4}=\frac{28}{7}=4\)
\(\Rightarrow x=4.3=12\)
\(y=4.4=16\)
b, Áp dụng t/c dtsbn
\(\frac{x}{2}=\frac{y}{-5}=\frac{x-y}{2-\left(-5\right)}=\frac{-7}{7}=-1\)
\(\Rightarrow x=-1.2=-2\)
\(y=\left(-1\right).\left(-5\right)=5\)
Câu 14: tìm x,y biết
x/2 = y/3 = z/4 và 2x + 3y - z = 27
ta có : `x/2 = y/3 = z/4=> (2x)/4 =(3y)/9 = z/4`
`=> (2x)/4 =(3y)/9 = z/4` và `2x + 3y - z = 27`
Áp dụng t/c dãy tỉ số bằng nhau ta có:
`(2x)/4 =(3y)/9 = z/4 =(2x + 3y - z)/(4+9-4)=27/9=3`
`=>x/2=3=>x=3.2=6`
`=>y/3=3=>x=3.3=9`
`=>z/4=3=>z=3.4=12`