Tìm x a) x^2- 2x+1=0 b)x^2 - 9=0
20.tìm x
a, 1/2 -3x + |x-1|=0 b, 1/2|2x-1| + |2x-1|= x+1
21. tìm x
a, 2x-5>0 b,-3x+9 <0
giúp em với ạ em cảm ơn
\(\dfrac{1}{2}-3x+\left|x-1\right|=0\\ \Rightarrow3x+\left|x-1\right|=\dfrac{1}{2}-0\\ \Rightarrow3x+\left|x-1\right|=\dfrac{1}{2}\\ \Rightarrow\left|x-1\right|=\dfrac{1}{2}-3x\\ \Rightarrow\left[{}\begin{matrix}x-1=\dfrac{1}{2}-3x\\x-1=-\dfrac{1}{2}+3x\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x+3x=\dfrac{1}{2}+1\\x-3x=-\dfrac{1}{2}+1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}4x=\dfrac{3}{2}\\2x=\dfrac{1}{2}\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{8}\\x=\dfrac{1}{4}\end{matrix}\right.\)
__
\(\dfrac{1}{2}\left|2x-1\right|+\left|2x-1\right|=x+1\\ \Rightarrow\left|2x-1\right|\cdot\left(\dfrac{1}{2}+1\right)=x+1\\ \Rightarrow\left|2x-1\right|\cdot\dfrac{3}{2}=x+1\\ \Rightarrow\left|2x-1\right|=x+1:\dfrac{3}{2}\\ \Rightarrow\left|2x-1\right|=x+\dfrac{2}{3}\\ \Rightarrow\left[{}\begin{matrix}2x-1=x+\dfrac{2}{3}\\2x-1=-x-\dfrac{2}{3}\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}2x-x=\dfrac{2}{3}+1\\2x+x=-\dfrac{2}{3}+1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\3x=\dfrac{1}{3}\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=\dfrac{1}{9}\end{matrix}\right.\)
Bài 2: Tìm x
a) (x-2)2-(2x+3)2=0
b) 9.(2x+1)2-4.(x+1)2=0
c) x3-6x2+9x=0
d) x2.(x+1)-x.(x+1)+x.(x-1)=0
a)\(\left(x-2\right)^2-\left(2x+3\right)^2=0\Rightarrow\left(x-2+2x+3\right)\left(x-2-2x-3\right)=0\)
\(\Rightarrow\left(3x+1\right)\left(-x-5\right)=0\Rightarrow\left[{}\begin{matrix}3x+1=0\\-x-5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x=-5\end{matrix}\right.\)
b)\(9\left(2x+1\right)^2-4\left(x+1\right)^2=0\Rightarrow\left[3\left(2x+1\right)+2\left(x+1\right)\right]\left[3\left(2x+1\right)-2\left(x+1\right)\right]=0\)
\(\Rightarrow\left[8x+5\right]\left[4x+1\right]=0\Rightarrow\left[{}\begin{matrix}8x+5=0\\4x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-\dfrac{5}{8}\\x=\dfrac{1}{4}\end{matrix}\right.\)
c)\(x^3-6x^2+9x=0\Rightarrow x\left(x^2-6x+9\right)=0\Rightarrow x\left(x-3\right)^2=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)
d) \(x^2\left(x+1\right)-x\left(x+1\right)+x\left(x-1\right)=0\)
\(\Rightarrow x\left(x+1\right)\left(x^2-1\right)+x\left(x-1\right)=0\)
\(\Rightarrow x\left(x+1\right)\left(x-1\right)\left(x+1\right)+x\left(x-1\right)=0\)
\(\Rightarrow x\left(x-1\right)\left[\left(x+1\right)\left(x+1\right)+1\right]=0\)
\(\Rightarrow x\left(x-1\right)\left[\left(x+1\right)^2+1\right]=0\)
Do \(\left(x+1\right)^2+1>0\)
\(\Rightarrow x\left(x-1\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
Bài 2: Tìm x
a) (x-2)2-(2x+3)2=0 d) x2.(x+1)-x.(x+1)+x.(x-1)=0
b) 9.(2x+1)2-4.(x+1)2=0 e) (x-2)2-(x-2).(x+2)=0
a, (\(x-2\))2 - (2\(x\) + 3)2 = 0
(\(x\) - 2 - 2\(x\) - 3)(\(x\) - 2 + 2\(x\) + 3) = 0
(-\(x\) - 5)(3\(x\) +1) = 0
\(\left[{}\begin{matrix}-x-5=0\\3x+1=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=-5\\3x=-1\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=-5\\x=-\dfrac{1}{3}\end{matrix}\right.\)
Vậy \(x\in\) { -5;- \(\dfrac{1}{3}\)}
b, 9.(2\(x\) + 1)2 - 4.(\(x\) + 1)2 = 0
{3.(2\(x\) + 1) - 2.(\(x\) +1)}{ 3.(2\(x\) +1) + 2.(\(x\) +1)} = 0
(6\(x\) + 3 - 2\(x\) - 2)(6\(x\) + 3 + 2\(x\) + 2) = 0
(4\(x\) + 1)(8\(x\) + 5) =0
\(\left[{}\begin{matrix}4x+1=0\\8x+5=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=-\dfrac{1}{4}\\x=-\dfrac{5}{8}\end{matrix}\right.\)
S = { - \(\dfrac{5}{8}\); \(\dfrac{-1}{4}\)}
d, \(x^2\)(\(x\) + 1) - \(x\) (\(x+1\)) + \(x\)(\(x\) -1) = 0
\(x\left(x+1\right)\).(\(x\) - 1) + \(x\)(\(x\) -1) = 0
\(x\)(\(x\) -1)(\(x\) + 1 + 1) = 0
\(x\left(x-1\right)\left(x+2\right)\) = 0
\(\left[{}\begin{matrix}x=0\\x-1=0\\x+2=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\x=1\\x=-2\end{matrix}\right.\)
S = { -2; 0; 1}
e, (\(x\) - 2)2- (\(x\) - 2)(\(x\) + 2) = 0
(\(x\) - 2)(\(x-2\) - \(x\) - 2) =0
-4 (\(x-2\)) = 0
\(x\) - 2 = 0
\(x\) = 2
S ={ 2}
Tìm x, biết:
a) 3x(x - 1) + x - 1 = 0;
b) (x - 2)( x 2 + 2x + 7) + 2( x 2 - 4) - 5(x - 2) = 0;
c) ( 2 x - 1 ) 2 - 25 = 0;
d) x 3 + 27 + (x + 3)(x - 9) = 0.
a) x = 1; x = - 1 3 b) x = 2.
c) x = 3; x = -2. d) x = -3; x = 0; x = 2.
Bài 2: Tìm x
a) (x-2)2-(2x+3)2=0 d) x2.(x+1)-x.(x+1)+x.(x-1)=0
b) 9.(2x+1)2-4.(x+1)2=0 e) (x-2)2-(x-2).(x+2)=0
c) x3-6x2+9x=0 g) x4-2x2+1=0
h) 4x2+y2-20x-2y+26=0 i) x2-2x+5+y2-4y=0
Tìm x: a)(2x+1)(1-2x)+(1-2x)^2=18
b) 2(x+1)^2-(x-3)(x+3)-(x-4)^2=0
c) (x-5)^2-x(x-4)=9
d) (x-5)^2+(x-4)(1-x)=0
a) (2x + 1)(1 - 2x) + (1 - 2x)2 = 18
= ( 1 - 2x) \(\left[\left(2x+1+1-2x\right)\right]\) = 18
= 2(1 - 2x) - 18 = 0
= 2 - 4x - 18 = 0
= -16 - 4x = 0
= -4x = 16
= x = \(\dfrac{16}{-4}=-4\)
b) 2(x + 1)2 -(x - 3)(x + 3) - (x - 4)2 = 0
= 2 (x2 + 2x + 1) - (x2 - 9) - (x2 - 8x + 16) = 0
= 2x2 + 4x + 2 - x2 + 9 - x2 + 8x - 16 = 0
= 12x - 5 = 0
= 12x = 5
= x = \(\dfrac{5}{12}\)
c) (x - 5)2 - x(x - 4) = 9
= x2 - 10x + 25 - x2 + 4x - 9 = 0
= -6x + 16 = 0
= -6x = -16
= x = \(\dfrac{-16}{-6}=\dfrac{8}{3}\)
d) (x - 5)2 + (x - 4)(1 - x)
= x2 - 10x + 25 + 5x - x2 - 4 = 0
= -5x + 21 = 0
= -5x = -21
= x = \(\dfrac{-21}{-5}=\dfrac{21}{5}\)
Chúc bạn học tốt
. Tìm x, biết:
a) 4x2 – 9 = 0
b) (x + 5)2 – (x – 1)2= 0
c) x2 – 6x – 7 = 0
d) (x + 1)2 – (2x - 1)2 = 0
a)4x2-9=0
⇔ (2x-3)(2x+3)=0
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)
b)(x+5)2-(x-1)2=0
⇔ (x+5-x+1)(x+5+x-1)=0
⇔ 12(x+2)=0
⇔ x=-2
c)x2-6x-7=0
⇔ x2-7x+x-7=0
⇔ x(x-7)+(x-7)=0
⇔ (x-7)(x+1)=0
\(\Leftrightarrow\left\{{}\begin{matrix}x=7\\x=-1\end{matrix}\right.\)
d)(x+1)2-(2x-1)2=0
⇔ (x+1-2x+1)(x+1+2x-1)=0
⇔3x(2-x)=0
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
a, 4x2 - 9 = 0
<=> 4x2 = 9
<=> x2 = \(\dfrac{9}{4}\) => x = \(\sqrt{\dfrac{9}{4}}\)
b, (x + 5 )2 - ( x - 1 )2 = 0
<=> ( x+5-x+1 )(x+5+x-1) = 0
<=> 6(2x+4) = 0
<=> 12x+24=0
<=> 12x = -24
<=> x = -2
c, x2-6x-7=0
<=> x2+x-7x-7=0
<=> x(x+1)-7(x+1)=0
<=> (x-7)(x+1)=0
=> x+7=0 hoặc x+1=0
+ x-7=0 => x=7
+ x+1=0 => x=-1
d, \(\left(x+1\right)^2-\left(2x-1\right)^2=0\)
<=> \(\left(x+1-2x+1\right)\left(x+1+2x-1\right)=0\)
<=> (-x+2).3x=0
=> x=0 hoặc (-x+2).3=0
+ (-x+2).3=0 => -3x+6=0 => x=-2
b) (x +5)2 -(x -1)2=0
<=> [(x +5) -(x -1)][(x +5) +(x -1)]=0
<=> (x +5 -x +1)(x +5 +x -1)=0
<=> 6(2x+4)=0 <=>12(x +2)=0
=> x +2=0=> x=-2
vậy x= -2
c) x2 -6x -7=0
<=> x2 -7x +x -7=0
<=> (x2 +x)( -7x -7)=0
<=> x(x +1).-7(x +1)=0
<=> (x +1)(x -7)=0
<=> \(\left\{{}\begin{matrix}x+1=0\\x-7=0\end{matrix}\right.< =>\left\{{}\begin{matrix}x=-1\\x=7\end{matrix}\right.\)
Vậy S={-1; 7}
d) (x +1)2 -(2x -1)2=0
<=> [(x -1)-(2x -1)][(x -1)+(2x -1)]=0
<=> (x -1 -2x +1)(x -1 +2x -1)=0
<=> (x -2x)(3x -2)<=> -x(3x -2)=0
<=> \(\left\{{}\begin{matrix}-x=0\\3x-2=0\end{matrix}\right.< =>\left\{{}\begin{matrix}x=0\\x=\dfrac{2}{3}\end{matrix}\right.\)
Vậy S={0; \(\dfrac{2}{3}\)}
tìm x biết
a/ x^3-x^2-x+1=0
b/(2x^3-3)^2-(4x^2-9)=0
c/x^4+2x^3-6x-9=0
d/2(x+5)-x^2-5x=0
\(a)\)\(x^3-x^2-x+1=0\)
\(\Leftrightarrow\)\(x^2\left(x-1\right)-\left(x-1\right)=0\)
\(\Leftrightarrow\)\(\left(x-1\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow\)\(\left(x-1\right)\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\)\(\left(x-1\right)^2\left(x+1\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}\left(x-1\right)^2=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}}\)
Vậy \(x=1\) hoặc \(x=-1\)
Chúc bạn học tốt ~
a) x3-x2-x+1 = 0 \(\Leftrightarrow x^2\left(x-1\right)-\left(x-1\right)=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x-1\right)=0\)\(\Leftrightarrow x^2-1=0\)hoặc x-1=0
\(\Leftrightarrow x=1\)
\(c)\)\(x^4+2x^3-6x-9=0\)
\(\Leftrightarrow\)\(\left(x^4-9\right)+\left(2x^3-6x\right)=0\)
\(\Leftrightarrow\)\(\left(x^2-3\right)\left(x^2+3\right)+2x\left(x^2-3\right)=0\)
\(\Leftrightarrow\)\(\left(x^2-3\right)\left(x^2+3+2x\right)=0\)
\(\Leftrightarrow\)\(x^2-3=0\)
Hoặc \(x^2+3+2x=0\)
\(\Leftrightarrow\)\(x^2=3\)
Hoặc \(x\left(x+2\right)=-3\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=3\\x=-3\end{cases}}\)
Hoặc \(x;\left(x-2\right)\inƯ\left(-3\right)\)
Ta có bảng :
\(x\) | \(1\) | \(-3\) | \(-1\) | \(3\) |
\(x-2\) | \(-3\) | \(1\) | \(3\) | \(-1\) |
\(x\) | \(1\) | \(-3\) | \(-1\) | \(3\) |
\(x\) | \(-1\) | \(3\) | \(5\) | \(1\) |
Vậy \(x\in\left\{1;-1;3;-3;5\right\}\)
Chúc bạn học tốt ~
Tìm x,y :
a)(y-2).(y-3)+(y-2)-1=0
b)x^3+27+(x+3).(x-9)=0
c)2(x+3)-x^2-3x=0
d)(x-7).(x+3)=(x+3.(2x-9)=0
e)36-x^2+2x-1=0