Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Nguyễn Việt Hoàng
Xem chi tiết
Trần Nguyễn Việt Hoàng
Xem chi tiết
Trần Nguyễn Việt Hoàng
Xem chi tiết
Bangtan Bàngtán Bất Bình...
17 tháng 12 2019 lúc 20:56

a)bn c/m hbh có  1 góc vuông là hcn

b) c/m EACH là hbh (EA//HC và EA=HC)

mà N là trung điểm AH nên N cx là trung điểm EC

c)ta có NM là đường trung bình tam giác BHA nên NM=HC/2(1)

mà BH=HC (AH là đc nên cx là đtt trong tam giác cân)

=> BH=BC/2(2)

từ (1) và (2)=>NM=BC/4=12/4=3cm

ta có NM vuông góc AH (NM//BC, AH vuông góc BC)

SAHM=1/2 x 8x3=12 cm2

d)ta có QC=QK,BH=HC

=>QH//BK

lại có KQ=QC,KI=IH

=>QI là đtb t.g KHC

=>QI//HC

mà HC vuoong góc HF

nên QI cx vuông góc HF

tam giác HQF có đường cao QI,HK cùng cắt tại I

nên I là trực tâm  

=>IF vuông góc HQ

mà HQ//BK 

=>IF vuông góc BK

Khách vãng lai đã xóa
Thị Kim Vĩnh Bùi
Xem chi tiết
Nguyễn Linh
Xem chi tiết
Trần Quốc Tuấn hi
Xem chi tiết
thái191816
Xem chi tiết
Nguyễn Phương
24 tháng 11 2021 lúc 19:34

A B C H M E N Xét △ABH có M là trung điểm AB

                      N là trung điểm AH

⇔MN là đường trung bình của △ABH

⇒MN // BH và MN=\(\dfrac{1}{2}\) BH hay MN // BC và MN=\(\dfrac{1}{4}\)BC

mà BC ⊥ AH (gt)

⇒MN ⊥ AH

e)

theo d  MN=\(\dfrac{1}{4}\)BC mà BC=12

⇒MN=3

S△AMH=\(\dfrac{8.3}{2}\)=12cm2

Vinh Nguyễn
Xem chi tiết
Nguyen Hien Phuong
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 1 2022 lúc 19:14

a: Xét tứ giác AHBE có

M là trung điểm của AB

M là trung điểm của HE

Do đó: AHBE là hình bình hành

mà \(\widehat{AHB}=90^0\)

nên AHBE là hình chữ nhật

b: Xét tứ giác ABFC có

H là trung điểm của AF

H là trung điểm của BC

Do đó:ABFC là hình bình hành

mà AB=AC

nên ABFC là hình thoi

Kudo Shinichi
9 tháng 1 2022 lúc 19:24

a) Ta có: E đối xứng với H qua M (gt)

=> M là trung điểm của HE

Xét tứ giác AHBE có:

MA = MB (M là trung điểm của AB)

ME = MH (M là trung điểm của HE)

\(\widehat{AHB}=90^o\)(Vì AH là đường cao vuông góc với BC)

=> AHBE là hcn (đpcm)

b, Vì ABC là tam giác cân

=> AB = AC (1)

Vì F đối xứng với A qua H

=> FB = AB ; FC = AC (2)

Từ (1) và (2) => AB = AC = FC = FB

Xét tứ giác ABFC có: AB = AC = FC = FB (cm trên)

=> ABFC là hình thoi (đpcm)