Viết biểu thức toán sau đây dưới dạng biểu thức trong Pascal
\(\frac{x^2}{3+y}+2+4-\frac{\left(a+b\right).c}{8+y}-\left(\frac{a}{b}\right)^2\)
Viết các biểu thức sau dưới dạng một luỹ thừa \(\left( {a > 0} \right)\):
a) \(3.\sqrt 3 .\sqrt[4]{3}.\sqrt[8]{3}\);
b) \(\sqrt {a\sqrt {a\sqrt a } } \);
c) \(\frac{{\sqrt a .\sqrt[3]{a}.\sqrt[4]{a}}}{{{{\left( {\sqrt[5]{a}} \right)}^3}.{a^{\frac{2}{5}}}}}\).
a: \(=3\cdot3^{\dfrac{1}{2}}\cdot3^{\dfrac{1}{.4}}\cdot3^{\dfrac{1}{8}}=3^{1+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}}=3^{\dfrac{15}{16}}\)
b: \(=\sqrt{a\cdot\sqrt{a\cdot a^{\dfrac{1}{2}}}}\)
\(=\sqrt{a\cdot\sqrt{a^{\dfrac{3}{2}}}}=\sqrt{a\cdot a^{\dfrac{3}{4}}}=\sqrt{a^{\dfrac{7}{4}}}=a^{\dfrac{7}{4}\cdot\dfrac{1.}{2}}=a^{\dfrac{7}{8}}\)
c: \(=\dfrac{a^{\dfrac{1}{2}}\cdot a^{\dfrac{1}{3}}\cdot a^{\dfrac{1}{4}}}{\left(a^{\dfrac{1}{5}}\right)^3\cdot a^{\dfrac{2}{5}}}=\dfrac{a^{\dfrac{13}{12}}}{a}=a^{\dfrac{1}{12}}\)
Bài 1: Tìm x, y, z biết
\(\left|x-\frac{1}{2}\right|+\left|2y-\frac{1}{3}\right|+\left|4z+5\right|\le0\)
Bài 2: Viết các biểu thức sau dưới dạng thu gọn
A = |x - 1| + x + 3
B = 2x - |2x + 3|
B1:
Vì \(\hept{\begin{cases}\left|x-\frac{1}{2}\right|\ge0\\\left|2y-\frac{1}{3}\right|\ge0\\\left|4z+5\right|\ge0\end{cases}\left(\forall x,y,z\right)}\Rightarrow\left|x-\frac{1}{2}\right|+\left|2y-\frac{1}{3}\right|+\left|4z+5\right|\ge0\left(\forall x,y,z\right)\)
Mà theo đề bài, \(\left|x-\frac{1}{2}\right|+\left|2y-\frac{1}{3}\right|+\left|4z+5\right|\le0\) nên dấu "=" xảy ra khi:
\(\left|x-\frac{1}{2}\right|=\left|2y-\frac{1}{3}\right|=\left|4z+5\right|=0\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{1}{6}\\z=-\frac{5}{4}\end{cases}}\)
B2:
a) Nếu \(x< 1\) => \(A=1-x+x+3=4\)
Nếu \(x\ge1\) => \(A=x-1+x+3=2x+2\)
b) Nếu \(x< -\frac{3}{2}\) => \(B=2x+2x+3=4x+3\)
Nếu \(x\ge-\frac{3}{2}\) => \(B=2x-2x-3=-3\)
Bài 1.
Ta có \(\hept{\begin{cases}\left|x-\frac{1}{2}\right|\ge0\forall x\\\left|2y-\frac{1}{3}\right|\ge0\forall y\\\left|4z+5\right|\ge0\forall z\end{cases}}\Rightarrow\left|x-\frac{1}{2}\right|+\left|2y-\frac{1}{3}\right|+\left|4z+5\right|\ge0\forall x,y,z\)
Kết hợp với đề bài => Chỉ xảy ra trường hợp \(\left|x-\frac{1}{2}\right|+\left|2y-\frac{1}{3}\right|+\left|4z+5\right|=0\)
\(\Rightarrow\hept{\begin{cases}x-\frac{1}{2}=0\\2y-\frac{1}{3}=0\\4z+5=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{1}{6}\\z=-\frac{5}{4}\end{cases}}\)
Bài 2.
A = | x - 1 | + x + 3
Với x < 1 => A = -( x - 1 ) + x + 3 = -x + 1 + x + 3 = 4
Với x ≥ 1 => A = ( x - 1 ) + x + 3 = x - 1 + x + 3 = 2x + 2
B = 2x - | 2x + 3 |
Với x < -3/2 => B = 2x - -( 2x + 3 ) = 2x + ( 2x + 3 ) = 2x + 2x + 3 = 4x + 3
Với x ≥ -3/2 => B = 2x + -( 2x + 3 ) = 2x - ( 2x + 3 ) = 2x - 2x - 3 = -3
Bài 7: Chứng minh 2 biểu thức sau đây 0 bằng nhau
a) A=3(x+y)+5x-y và B=x+y
b) M=(x-1)² và N=x²+1)
c)P=x²-y² và Q=x²+y²
Bài 8: Tìm giá trị các biến a và b làm cho các biểu thức sau 0 có nghĩa
a)\(\frac{ab+b^2}{\left(a-1\right)^2}\)
b) \(\frac{1+ab^2}{\left(a-2\right)\left(b+5\right)}\)
c) \(\frac{\left(a+b^2\right)\left(a-2\right)}{ab^2\left(a-1\right)}\)
d) \(\frac{a^2b+b^3}{ab-a^2}\)
1.Với giá trị nào của biến thì giá trị của biểu thức bằng 0
\(\frac{x+1}{7};\frac{3x+3}{5};\frac{3x\left(x-5\right)}{x-7};\frac{2x\left(x+1\right)}{3x+4}\)
2.Tính giá trị của các biểu thức sau:
\(A=\frac{a^2\left(a^2+b^2\right)\left(a^{\text{4}}+b^{\text{4 }}\right)\left(a^8+b^8\right)\left(a^2-3b\right)}{\left(a^{10}+b^{10}\right)}\)tại a=6;b=12
\(B=3xy\left(x+y\right)+2x^3y+2x^2y^2+5\)tại x+y=0
\(C=2x+2y+3xy\left(x+y\right)+5\left(x^3y^2+x^2y^3\right)+4\)tại x+y=0
1) Cho a^3+b^3+c^3=3abc và abc khác 0. Tính giá trị của P=\(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
2) Tính giá trị biểu thức A= \(\frac{a^3+b^3+c^3-3abc}{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}\)
với a khác b, hoặc b khác c, hoặc c khác a
3) Tính giá trị biểu thức B= \(\frac{\left(x^2-y^2\right)^3+\left(y^2-z^2\right)^3+\left(z^2-x^2\right)^3}{\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3}\)
với x khác y, hoặc y khác z, hoặc z khác x
4) Tính giá trị biểu thức C= \(\frac{\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3}{3\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)
với x khác y; y khác z; z khác x
1/Cho a,b,c thỏa mãn \(\frac{2}{\left(x^2+1\right)\left(x-1\right)}=\frac{ax+b}{x^2+1}+\frac{c}{x-1}\)
Tính giá trị biểu thức M=\(\frac{a^{2017}+b^{2018}+c^{2019}}{a^{2017}b^{2018}c^{2019}}\)
2/Cho x,y,z≠0 và x+y+z=2008
Tính giá trị biểu thức P=\(\frac{x^3}{\left(x-y\right)\left(x-z\right)}+\frac{y^3}{\left(y-x\right)\left(y-z\right)}+\frac{z^3}{\left(z-y\right)\left(z-x\right)}\)
Bài 1: Biến đổi mỗi biểu thức sau thành một phân thức đại số:
a) \(\frac{\frac{x}{y}+\frac{y}{x}-2}{\frac{x}{y}-\frac{y}{x}}\) b) \(\frac{1-\frac{2}{x+1}}{1-\frac{x^2-2}{x^2-1}}\) c) \(\frac{\frac{x+1}{x-1}-\frac{x-1}{x+1}}{1-\frac{x-1}{x+1}}\)
Bài 2: Thực hiện phép tính:
a) \(\left(\frac{2x+1}{2x-1}-\frac{2x-1}{2x+1}\right):\frac{4x}{10x-5}\) b) \(\left(\frac{1}{x^2+x}-\frac{2-x}{x+1}\right):\left(\frac{1}{x}+x-2\right)\)
Bài 3: Cho biểu thức \(\left(\frac{x+1}{2x-2}-\frac{3}{1-x^2}-\frac{x+3}{2x+2}\right).\frac{4x^2-4}{5}\)
a) Hãy tìm điều kiện của x để biểu thức được xác định.
b) Rút gọn biểu thức.
Bài 4: Cho biểu thức: \(A=\left(\frac{x}{x^2-4}+\frac{2}{2-x}+\frac{1}{x+2}\right):\left(x-2+\frac{10-x^2}{x+2}\right)\)
a) Rút gọn biểu thức A.
b) Tính giá trị biểu thức A tại x, biết |x| = \(\frac{1}{2}\)
c) Tìm giá trị của x để A < 0.
Các cậu giúp tớ với nha ~ Tớ cảm ơn trước ^^
Bài 2:
a) ĐK: $x\geq \pm \frac{1}{2}; x\neq 0$
\(\left(\frac{2x+1}{2x-1}-\frac{2x-1}{2x+1}\right):\frac{4x}{10x-5}=\frac{(2x+1)^2-(2x-1)^2}{(2x-1)(2x+1)}.\frac{10x-5}{4x}\)
\(\frac{4x^2+4x+1-(4x^2-4x+1)}{(2x-1)(2x+1)}.\frac{5(2x-1)}{4x}=\frac{8x}{(2x-1)(2x+1)}.\frac{5(2x-1)}{4x}\)
\(=\frac{10}{2x+1}\)
b) ĐK : $x\neq 0;-1$
\(\left(\frac{1}{x^2+x}-\frac{2-x}{x+1}\right):\left(\frac{1}{x}+x-2\right)=\left(\frac{1}{x(x+1)}-\frac{x(2-x)}{x(x+1)}\right):\frac{1+x^2-2x}{x}\)
\(=\frac{1-2x+x^2}{x(x+1)}.\frac{x}{1+x^2-2x}=\frac{x}{x(x+1)}=\frac{1}{x+1}\)
Bài 3:
a) ĐKXĐ: \(x\neq \pm 1\)
b)
\(A=\left(\frac{x+1}{2x-2}-\frac{3}{1-x^2}-\frac{x+3}{2x+2}\right).\frac{4x^2-4}{5}\)
\(=\left[\frac{(x+1)^2}{2(x-1)(x+1)}+\frac{6}{2(x-1)(x+1)}-\frac{(x+3)(x-1)}{2(x+1)(x-1)}\right].\frac{4(x^2-1)}{5}\)
\(=\frac{(x+1)^2+6-(x^2+2x-3)}{2(x-1)(x+1)}.\frac{4(x-1)(x+1)}{5}\)
\(=\frac{10}{2(x-1)(x+1)}.\frac{4(x-1)(x+1)}{5}=4\)
Bài 4:
a) ĐKXĐ: \(x\neq \pm 2\)
b)
\(A=\left(\frac{x}{(x-2)(x+2)}-\frac{2(x+2)}{(x-2)(x+2)}+\frac{x-2}{(x+2)(x-2)}\right):\frac{(x-2)(x+2)+10-x^2}{x+2}\)
\(=\frac{x-2(x+2)+(x-2)}{(x-2)(x+2)}:\frac{x^2-4+10-x^2}{x+2}\)
\(=\frac{-6}{(x-2)(x+2)}:\frac{6}{x+2}=\frac{-6}{(x-2)(x+2)}.\frac{x+2}{6}=\frac{-1}{x-2}\)
b)
\(|x|=\frac{1}{2}\Rightarrow \left[\begin{matrix} x=\frac{1}{2}\\ x=-\frac{1}{2}\end{matrix}\right.\)
Nếu $x=\frac{1}{2}$ thì $A=\frac{-1}{\frac{1}{2}-2}=\frac{2}{3}$
Nếu $x=\frac{-1}{2}$ thì $A=\frac{-1}{\frac{-1}{2}-2}=\frac{2}{5}$
c)
Để \(A< 0\Leftrightarrow \frac{-1}{x-2}< 0\Leftrightarrow x-2>0\Leftrightarrow x>2\)
Kết hợp với ĐKXĐ ta suy ra $x>2$
Cho biểu thức:
\(P=\frac{\left(x^2+y\right)\left(y+\frac{1}{4}\right)+\frac{3}{4}\left(y+\frac{1}{3}\right)+x^2y^2}{\left(x^2-y\right)\left(1-y\right)+x^2y^2+1}\)
a) Rút gọn P
b) Tính giá trị của biểu thức P với các số nguyên dương x;y thỏa mãn: 1! + 2! +...+ x! = y2
viết các biểu thức sau dưới dạng tổng
\((x+\frac{4}{3}y^2)^2\)
\(\left(2x^2+\frac{5}{3}y\right)^2\)
\(\left(x+\frac{4}{3}y^2\right)^2=x^2+\frac{8xy^2}{3}+\frac{16y^4}{9}\)
\(\left(2x^2+\frac{5}{3}y\right)^2=4x^4+\frac{20x^2y}{3}+\frac{25y^2}{9}\)
\(\left(x+\frac{4}{3}y^2\right)^2=x^2+2\cdot x\cdot\frac{4}{3}y^2+\left(\frac{4}{3}y^2\right)^2=x^2+\frac{8}{3}xy^2+\frac{16}{9}y^4\)
\(\left(2x^2+\frac{5}{3}y\right)^2=\left(2x^2\right)^2+2\cdot2x^2\cdot\frac{5}{3}y+\left(\frac{5}{3}y\right)^2=4x^4+\frac{20}{3}x^2y+\frac{25}{9}y^2\)