Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Buddy
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 8 2023 lúc 23:28

a: \(=3\cdot3^{\dfrac{1}{2}}\cdot3^{\dfrac{1}{.4}}\cdot3^{\dfrac{1}{8}}=3^{1+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}}=3^{\dfrac{15}{16}}\)

b: \(=\sqrt{a\cdot\sqrt{a\cdot a^{\dfrac{1}{2}}}}\)

\(=\sqrt{a\cdot\sqrt{a^{\dfrac{3}{2}}}}=\sqrt{a\cdot a^{\dfrac{3}{4}}}=\sqrt{a^{\dfrac{7}{4}}}=a^{\dfrac{7}{4}\cdot\dfrac{1.}{2}}=a^{\dfrac{7}{8}}\)

c: \(=\dfrac{a^{\dfrac{1}{2}}\cdot a^{\dfrac{1}{3}}\cdot a^{\dfrac{1}{4}}}{\left(a^{\dfrac{1}{5}}\right)^3\cdot a^{\dfrac{2}{5}}}=\dfrac{a^{\dfrac{13}{12}}}{a}=a^{\dfrac{1}{12}}\)

Triệu Thùy Linh
Xem chi tiết
FL.Han_
5 tháng 9 2020 lúc 14:03

B1:

Vì \(\hept{\begin{cases}\left|x-\frac{1}{2}\right|\ge0\\\left|2y-\frac{1}{3}\right|\ge0\\\left|4z+5\right|\ge0\end{cases}\left(\forall x,y,z\right)}\Rightarrow\left|x-\frac{1}{2}\right|+\left|2y-\frac{1}{3}\right|+\left|4z+5\right|\ge0\left(\forall x,y,z\right)\)

Mà theo đề bài, \(\left|x-\frac{1}{2}\right|+\left|2y-\frac{1}{3}\right|+\left|4z+5\right|\le0\) nên dấu "=" xảy ra khi:

\(\left|x-\frac{1}{2}\right|=\left|2y-\frac{1}{3}\right|=\left|4z+5\right|=0\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{1}{6}\\z=-\frac{5}{4}\end{cases}}\)

Khách vãng lai đã xóa
FL.Han_
5 tháng 9 2020 lúc 14:06

B2:

a) Nếu \(x< 1\) => \(A=1-x+x+3=4\)

Nếu \(x\ge1\) => \(A=x-1+x+3=2x+2\)

b) Nếu \(x< -\frac{3}{2}\) => \(B=2x+2x+3=4x+3\)

Nếu \(x\ge-\frac{3}{2}\) => \(B=2x-2x-3=-3\)

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
5 tháng 9 2020 lúc 15:18

Bài 1.

Ta có \(\hept{\begin{cases}\left|x-\frac{1}{2}\right|\ge0\forall x\\\left|2y-\frac{1}{3}\right|\ge0\forall y\\\left|4z+5\right|\ge0\forall z\end{cases}}\Rightarrow\left|x-\frac{1}{2}\right|+\left|2y-\frac{1}{3}\right|+\left|4z+5\right|\ge0\forall x,y,z\)

Kết hợp với đề bài => Chỉ xảy ra trường hợp \(\left|x-\frac{1}{2}\right|+\left|2y-\frac{1}{3}\right|+\left|4z+5\right|=0\)

\(\Rightarrow\hept{\begin{cases}x-\frac{1}{2}=0\\2y-\frac{1}{3}=0\\4z+5=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{1}{6}\\z=-\frac{5}{4}\end{cases}}\)

Bài 2.

A = | x - 1 | + x + 3

Với x < 1 => A = -( x - 1 ) + x + 3 = -x + 1 + x + 3 = 4

Với x ≥ 1 => A = ( x - 1 ) + x + 3 = x - 1 + x + 3 = 2x + 2

B = 2x - | 2x + 3 |

Với x < -3/2 => B = 2x - -( 2x + 3 ) = 2x + ( 2x + 3 ) = 2x + 2x + 3 = 4x + 3 

Với x ≥ -3/2 => B = 2x + -( 2x + 3 ) = 2x - ( 2x + 3 ) = 2x - 2x - 3 = -3

Khách vãng lai đã xóa
A Nguyễn
Xem chi tiết
Phác Trí Nghiên
Xem chi tiết
Bí Mật
Xem chi tiết
Hoàng Quốc Tuấn
Xem chi tiết
Nguyễn Thảo Linh
Xem chi tiết
Akai Haruma
28 tháng 6 2019 lúc 17:40

Bài 2:

a) ĐK: $x\geq \pm \frac{1}{2}; x\neq 0$

\(\left(\frac{2x+1}{2x-1}-\frac{2x-1}{2x+1}\right):\frac{4x}{10x-5}=\frac{(2x+1)^2-(2x-1)^2}{(2x-1)(2x+1)}.\frac{10x-5}{4x}\)

\(\frac{4x^2+4x+1-(4x^2-4x+1)}{(2x-1)(2x+1)}.\frac{5(2x-1)}{4x}=\frac{8x}{(2x-1)(2x+1)}.\frac{5(2x-1)}{4x}\)

\(=\frac{10}{2x+1}\)

b) ĐK : $x\neq 0;-1$

\(\left(\frac{1}{x^2+x}-\frac{2-x}{x+1}\right):\left(\frac{1}{x}+x-2\right)=\left(\frac{1}{x(x+1)}-\frac{x(2-x)}{x(x+1)}\right):\frac{1+x^2-2x}{x}\)

\(=\frac{1-2x+x^2}{x(x+1)}.\frac{x}{1+x^2-2x}=\frac{x}{x(x+1)}=\frac{1}{x+1}\)

Akai Haruma
28 tháng 6 2019 lúc 17:43

Bài 3:
a) ĐKXĐ: \(x\neq \pm 1\)

b)

\(A=\left(\frac{x+1}{2x-2}-\frac{3}{1-x^2}-\frac{x+3}{2x+2}\right).\frac{4x^2-4}{5}\)

\(=\left[\frac{(x+1)^2}{2(x-1)(x+1)}+\frac{6}{2(x-1)(x+1)}-\frac{(x+3)(x-1)}{2(x+1)(x-1)}\right].\frac{4(x^2-1)}{5}\)

\(=\frac{(x+1)^2+6-(x^2+2x-3)}{2(x-1)(x+1)}.\frac{4(x-1)(x+1)}{5}\)

\(=\frac{10}{2(x-1)(x+1)}.\frac{4(x-1)(x+1)}{5}=4\)

Akai Haruma
28 tháng 6 2019 lúc 17:48

Bài 4:

a) ĐKXĐ: \(x\neq \pm 2\)

b)

\(A=\left(\frac{x}{(x-2)(x+2)}-\frac{2(x+2)}{(x-2)(x+2)}+\frac{x-2}{(x+2)(x-2)}\right):\frac{(x-2)(x+2)+10-x^2}{x+2}\)

\(=\frac{x-2(x+2)+(x-2)}{(x-2)(x+2)}:\frac{x^2-4+10-x^2}{x+2}\)

\(=\frac{-6}{(x-2)(x+2)}:\frac{6}{x+2}=\frac{-6}{(x-2)(x+2)}.\frac{x+2}{6}=\frac{-1}{x-2}\)

b)

\(|x|=\frac{1}{2}\Rightarrow \left[\begin{matrix} x=\frac{1}{2}\\ x=-\frac{1}{2}\end{matrix}\right.\)

Nếu $x=\frac{1}{2}$ thì $A=\frac{-1}{\frac{1}{2}-2}=\frac{2}{3}$

Nếu $x=\frac{-1}{2}$ thì $A=\frac{-1}{\frac{-1}{2}-2}=\frac{2}{5}$

c)

Để \(A< 0\Leftrightarrow \frac{-1}{x-2}< 0\Leftrightarrow x-2>0\Leftrightarrow x>2\)

Kết hợp với ĐKXĐ ta suy ra $x>2$

Trung Nguyen
Xem chi tiết
Mạc Hy
Xem chi tiết
Akali
10 tháng 9 2020 lúc 21:42

\(\left(x+\frac{4}{3}y^2\right)^2=x^2+\frac{8xy^2}{3}+\frac{16y^4}{9}\)

\(\left(2x^2+\frac{5}{3}y\right)^2=4x^4+\frac{20x^2y}{3}+\frac{25y^2}{9}\)

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
10 tháng 9 2020 lúc 21:47

\(\left(x+\frac{4}{3}y^2\right)^2=x^2+2\cdot x\cdot\frac{4}{3}y^2+\left(\frac{4}{3}y^2\right)^2=x^2+\frac{8}{3}xy^2+\frac{16}{9}y^4\)

\(\left(2x^2+\frac{5}{3}y\right)^2=\left(2x^2\right)^2+2\cdot2x^2\cdot\frac{5}{3}y+\left(\frac{5}{3}y\right)^2=4x^4+\frac{20}{3}x^2y+\frac{25}{9}y^2\)

Khách vãng lai đã xóa