Bài 1: Biến đổi mỗi biểu thức sau thành một phân thức đại số:
a) \(\frac{\frac{x}{y}+\frac{y}{x}-2}{\frac{x}{y}-\frac{y}{x}}\) b) \(\frac{1-\frac{2}{x+1}}{1-\frac{x^2-2}{x^2-1}}\) c) \(\frac{\frac{x+1}{x-1}-\frac{x-1}{x+1}}{1-\frac{x-1}{x+1}}\)
Bài 2: Thực hiện phép tính:
a) \(\left(\frac{2x+1}{2x-1}-\frac{2x-1}{2x+1}\right):\frac{4x}{10x-5}\) b) \(\left(\frac{1}{x^2+x}-\frac{2-x}{x+1}\right):\left(\frac{1}{x}+x-2\right)\)
Bài 3: Cho biểu thức \(\left(\frac{x+1}{2x-2}-\frac{3}{1-x^2}-\frac{x+3}{2x+2}\right).\frac{4x^2-4}{5}\)
a) Hãy tìm điều kiện của x để biểu thức được xác định.
b) Rút gọn biểu thức.
Bài 4: Cho biểu thức: \(A=\left(\frac{x}{x^2-4}+\frac{2}{2-x}+\frac{1}{x+2}\right):\left(x-2+\frac{10-x^2}{x+2}\right)\)
a) Rút gọn biểu thức A.
b) Tính giá trị biểu thức A tại x, biết |x| = \(\frac{1}{2}\)
c) Tìm giá trị của x để A < 0.
Các cậu giúp tớ với nha ~ Tớ cảm ơn trước ^^
Bài 2:
a) ĐK: $x\geq \pm \frac{1}{2}; x\neq 0$
\(\left(\frac{2x+1}{2x-1}-\frac{2x-1}{2x+1}\right):\frac{4x}{10x-5}=\frac{(2x+1)^2-(2x-1)^2}{(2x-1)(2x+1)}.\frac{10x-5}{4x}\)
\(\frac{4x^2+4x+1-(4x^2-4x+1)}{(2x-1)(2x+1)}.\frac{5(2x-1)}{4x}=\frac{8x}{(2x-1)(2x+1)}.\frac{5(2x-1)}{4x}\)
\(=\frac{10}{2x+1}\)
b) ĐK : $x\neq 0;-1$
\(\left(\frac{1}{x^2+x}-\frac{2-x}{x+1}\right):\left(\frac{1}{x}+x-2\right)=\left(\frac{1}{x(x+1)}-\frac{x(2-x)}{x(x+1)}\right):\frac{1+x^2-2x}{x}\)
\(=\frac{1-2x+x^2}{x(x+1)}.\frac{x}{1+x^2-2x}=\frac{x}{x(x+1)}=\frac{1}{x+1}\)
Bài 3:
a) ĐKXĐ: \(x\neq \pm 1\)
b)
\(A=\left(\frac{x+1}{2x-2}-\frac{3}{1-x^2}-\frac{x+3}{2x+2}\right).\frac{4x^2-4}{5}\)
\(=\left[\frac{(x+1)^2}{2(x-1)(x+1)}+\frac{6}{2(x-1)(x+1)}-\frac{(x+3)(x-1)}{2(x+1)(x-1)}\right].\frac{4(x^2-1)}{5}\)
\(=\frac{(x+1)^2+6-(x^2+2x-3)}{2(x-1)(x+1)}.\frac{4(x-1)(x+1)}{5}\)
\(=\frac{10}{2(x-1)(x+1)}.\frac{4(x-1)(x+1)}{5}=4\)
Bài 4:
a) ĐKXĐ: \(x\neq \pm 2\)
b)
\(A=\left(\frac{x}{(x-2)(x+2)}-\frac{2(x+2)}{(x-2)(x+2)}+\frac{x-2}{(x+2)(x-2)}\right):\frac{(x-2)(x+2)+10-x^2}{x+2}\)
\(=\frac{x-2(x+2)+(x-2)}{(x-2)(x+2)}:\frac{x^2-4+10-x^2}{x+2}\)
\(=\frac{-6}{(x-2)(x+2)}:\frac{6}{x+2}=\frac{-6}{(x-2)(x+2)}.\frac{x+2}{6}=\frac{-1}{x-2}\)
b)
\(|x|=\frac{1}{2}\Rightarrow \left[\begin{matrix} x=\frac{1}{2}\\ x=-\frac{1}{2}\end{matrix}\right.\)
Nếu $x=\frac{1}{2}$ thì $A=\frac{-1}{\frac{1}{2}-2}=\frac{2}{3}$
Nếu $x=\frac{-1}{2}$ thì $A=\frac{-1}{\frac{-1}{2}-2}=\frac{2}{5}$
c)
Để \(A< 0\Leftrightarrow \frac{-1}{x-2}< 0\Leftrightarrow x-2>0\Leftrightarrow x>2\)
Kết hợp với ĐKXĐ ta suy ra $x>2$
Bài 4:
a) ĐKXĐ: \(x\neq \pm 2\)
b)
\(A=\left(\frac{x}{(x-2)(x+2)}-\frac{2(x+2)}{(x-2)(x+2)}+\frac{x-2}{(x+2)(x-2)}\right):\frac{(x-2)(x+2)+10-x^2}{x+2}\)
\(=\frac{x-2(x+2)+(x-2)}{(x-2)(x+2)}:\frac{x^2-4+10-x^2}{x+2}\)
\(=\frac{-6}{(x-2)(x+2)}:\frac{6}{x+2}=\frac{-6}{(x-2)(x+2)}.\frac{x+2}{6}=\frac{-1}{x-2}\)
b)
\(|x|=\frac{1}{2}\Rightarrow \left[\begin{matrix} x=\frac{1}{2}\\ x=-\frac{1}{2}\end{matrix}\right.\)
Nếu $x=\frac{1}{2}$ thì $A=\frac{-1}{\frac{1}{2}-2}=\frac{2}{3}$
Nếu $x=\frac{-1}{2}$ thì $A=\frac{-1}{\frac{-1}{2}-2}=\frac{2}{5}$
c)
Để \(A< 0\Leftrightarrow \frac{-1}{x-2}< 0\Leftrightarrow x-2>0\Leftrightarrow x>2\)
Kết hợp với ĐKXĐ ta suy ra $x>2$
Bài 1:
a)
\(\frac{\frac{x}{y}+\frac{y}{x}-2}{\frac{x}{y}-\frac{y}{x}}=\frac{\frac{x^2+y^2}{xy}-2}{\frac{x^2-y^2}{xy}}=\frac{\frac{x^2+y^2-2xy}{xy}}{\frac{x^2-y^2}{xy}}=\frac{x^2+y^2-2xy}{x^2-y^2}=\frac{(x-y)^2}{(x-y)(x+y)}=\frac{x-y}{x+y}\)
b)
\(\frac{1-\frac{2}{x+1}}{1-\frac{x^2-2}{x^2-1}}=\frac{\frac{x-1}{x+1}}{\frac{1}{x^2-1}}=\frac{x-1}{x+1}.(x^2-1)=\frac{x-1}{x+1}.(x-1)(x+1)=(x-1)^2\)
c)
\(\frac{\frac{x+1}{x-1}-\frac{x-1}{x+1}}{1-\frac{x-1}{x+1}}=\frac{\frac{(x+1)^2-(x-1)^2}{(x-1)(x+1)}}{\frac{2}{x+1}}=\frac{\frac{x^2+2x+1-(x^2-2x+1)}{(x-1)(x+1)}}{\frac{2}{x+1}}=\frac{\frac{(x+1)^2-(x-1)^2}{(x-1)(x+1)}}{\frac{2}{x+1}}=\frac{4x}{(x-1)(x+1)}.\frac{x+1}{2}=\frac{2x}{x-1}\)