Bài 9: Biến đổi các biểu thức hữu tỉ. Giá trị của phân thức

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thảo Linh

Bài 1: Biến đổi mỗi biểu thức sau thành một phân thức đại số:

a) \(\frac{\frac{x}{y}+\frac{y}{x}-2}{\frac{x}{y}-\frac{y}{x}}\) b) \(\frac{1-\frac{2}{x+1}}{1-\frac{x^2-2}{x^2-1}}\) c) \(\frac{\frac{x+1}{x-1}-\frac{x-1}{x+1}}{1-\frac{x-1}{x+1}}\)

Bài 2: Thực hiện phép tính:

a) \(\left(\frac{2x+1}{2x-1}-\frac{2x-1}{2x+1}\right):\frac{4x}{10x-5}\) b) \(\left(\frac{1}{x^2+x}-\frac{2-x}{x+1}\right):\left(\frac{1}{x}+x-2\right)\)

Bài 3: Cho biểu thức \(\left(\frac{x+1}{2x-2}-\frac{3}{1-x^2}-\frac{x+3}{2x+2}\right).\frac{4x^2-4}{5}\)

a) Hãy tìm điều kiện của x để biểu thức được xác định.

b) Rút gọn biểu thức.

Bài 4: Cho biểu thức: \(A=\left(\frac{x}{x^2-4}+\frac{2}{2-x}+\frac{1}{x+2}\right):\left(x-2+\frac{10-x^2}{x+2}\right)\)

a) Rút gọn biểu thức A.

b) Tính giá trị biểu thức A tại x, biết |x| = \(\frac{1}{2}\)

c) Tìm giá trị của x để A < 0.

Các cậu giúp tớ với nha ~ Tớ cảm ơn trước ^^

Akai Haruma
28 tháng 6 2019 lúc 17:40

Bài 2:

a) ĐK: $x\geq \pm \frac{1}{2}; x\neq 0$

\(\left(\frac{2x+1}{2x-1}-\frac{2x-1}{2x+1}\right):\frac{4x}{10x-5}=\frac{(2x+1)^2-(2x-1)^2}{(2x-1)(2x+1)}.\frac{10x-5}{4x}\)

\(\frac{4x^2+4x+1-(4x^2-4x+1)}{(2x-1)(2x+1)}.\frac{5(2x-1)}{4x}=\frac{8x}{(2x-1)(2x+1)}.\frac{5(2x-1)}{4x}\)

\(=\frac{10}{2x+1}\)

b) ĐK : $x\neq 0;-1$

\(\left(\frac{1}{x^2+x}-\frac{2-x}{x+1}\right):\left(\frac{1}{x}+x-2\right)=\left(\frac{1}{x(x+1)}-\frac{x(2-x)}{x(x+1)}\right):\frac{1+x^2-2x}{x}\)

\(=\frac{1-2x+x^2}{x(x+1)}.\frac{x}{1+x^2-2x}=\frac{x}{x(x+1)}=\frac{1}{x+1}\)

Akai Haruma
28 tháng 6 2019 lúc 17:43

Bài 3:
a) ĐKXĐ: \(x\neq \pm 1\)

b)

\(A=\left(\frac{x+1}{2x-2}-\frac{3}{1-x^2}-\frac{x+3}{2x+2}\right).\frac{4x^2-4}{5}\)

\(=\left[\frac{(x+1)^2}{2(x-1)(x+1)}+\frac{6}{2(x-1)(x+1)}-\frac{(x+3)(x-1)}{2(x+1)(x-1)}\right].\frac{4(x^2-1)}{5}\)

\(=\frac{(x+1)^2+6-(x^2+2x-3)}{2(x-1)(x+1)}.\frac{4(x-1)(x+1)}{5}\)

\(=\frac{10}{2(x-1)(x+1)}.\frac{4(x-1)(x+1)}{5}=4\)

Akai Haruma
28 tháng 6 2019 lúc 17:48

Bài 4:

a) ĐKXĐ: \(x\neq \pm 2\)

b)

\(A=\left(\frac{x}{(x-2)(x+2)}-\frac{2(x+2)}{(x-2)(x+2)}+\frac{x-2}{(x+2)(x-2)}\right):\frac{(x-2)(x+2)+10-x^2}{x+2}\)

\(=\frac{x-2(x+2)+(x-2)}{(x-2)(x+2)}:\frac{x^2-4+10-x^2}{x+2}\)

\(=\frac{-6}{(x-2)(x+2)}:\frac{6}{x+2}=\frac{-6}{(x-2)(x+2)}.\frac{x+2}{6}=\frac{-1}{x-2}\)

b)

\(|x|=\frac{1}{2}\Rightarrow \left[\begin{matrix} x=\frac{1}{2}\\ x=-\frac{1}{2}\end{matrix}\right.\)

Nếu $x=\frac{1}{2}$ thì $A=\frac{-1}{\frac{1}{2}-2}=\frac{2}{3}$

Nếu $x=\frac{-1}{2}$ thì $A=\frac{-1}{\frac{-1}{2}-2}=\frac{2}{5}$

c)

Để \(A< 0\Leftrightarrow \frac{-1}{x-2}< 0\Leftrightarrow x-2>0\Leftrightarrow x>2\)

Kết hợp với ĐKXĐ ta suy ra $x>2$

Akai Haruma
18 tháng 6 2019 lúc 11:49

Bài 4:

a) ĐKXĐ: \(x\neq \pm 2\)

b)

\(A=\left(\frac{x}{(x-2)(x+2)}-\frac{2(x+2)}{(x-2)(x+2)}+\frac{x-2}{(x+2)(x-2)}\right):\frac{(x-2)(x+2)+10-x^2}{x+2}\)

\(=\frac{x-2(x+2)+(x-2)}{(x-2)(x+2)}:\frac{x^2-4+10-x^2}{x+2}\)

\(=\frac{-6}{(x-2)(x+2)}:\frac{6}{x+2}=\frac{-6}{(x-2)(x+2)}.\frac{x+2}{6}=\frac{-1}{x-2}\)

b)

\(|x|=\frac{1}{2}\Rightarrow \left[\begin{matrix} x=\frac{1}{2}\\ x=-\frac{1}{2}\end{matrix}\right.\)

Nếu $x=\frac{1}{2}$ thì $A=\frac{-1}{\frac{1}{2}-2}=\frac{2}{3}$

Nếu $x=\frac{-1}{2}$ thì $A=\frac{-1}{\frac{-1}{2}-2}=\frac{2}{5}$

c)

Để \(A< 0\Leftrightarrow \frac{-1}{x-2}< 0\Leftrightarrow x-2>0\Leftrightarrow x>2\)

Kết hợp với ĐKXĐ ta suy ra $x>2$

Akai Haruma
28 tháng 6 2019 lúc 17:35

Bài 1:

a)

\(\frac{\frac{x}{y}+\frac{y}{x}-2}{\frac{x}{y}-\frac{y}{x}}=\frac{\frac{x^2+y^2}{xy}-2}{\frac{x^2-y^2}{xy}}=\frac{\frac{x^2+y^2-2xy}{xy}}{\frac{x^2-y^2}{xy}}=\frac{x^2+y^2-2xy}{x^2-y^2}=\frac{(x-y)^2}{(x-y)(x+y)}=\frac{x-y}{x+y}\)

b)

\(\frac{1-\frac{2}{x+1}}{1-\frac{x^2-2}{x^2-1}}=\frac{\frac{x-1}{x+1}}{\frac{1}{x^2-1}}=\frac{x-1}{x+1}.(x^2-1)=\frac{x-1}{x+1}.(x-1)(x+1)=(x-1)^2\)

c)

\(\frac{\frac{x+1}{x-1}-\frac{x-1}{x+1}}{1-\frac{x-1}{x+1}}=\frac{\frac{(x+1)^2-(x-1)^2}{(x-1)(x+1)}}{\frac{2}{x+1}}=\frac{\frac{x^2+2x+1-(x^2-2x+1)}{(x-1)(x+1)}}{\frac{2}{x+1}}=\frac{\frac{(x+1)^2-(x-1)^2}{(x-1)(x+1)}}{\frac{2}{x+1}}=\frac{4x}{(x-1)(x+1)}.\frac{x+1}{2}=\frac{2x}{x-1}\)


Các câu hỏi tương tự
Nguyễn Thảo Linh
Xem chi tiết
Nguyễn Thảo Linh
Xem chi tiết
Nguyễn Thảo Linh
Xem chi tiết
Phạm Thị Linh Đan
Xem chi tiết
Nguyễn Tuấn Anh
Xem chi tiết
Trần Thị Hảo
Xem chi tiết
Linh Nguyễn
Xem chi tiết
Bùi Huyền Trang
Xem chi tiết
nguyen thu hoai
Xem chi tiết