tinh gia tri bieu thuc :
a, Q:= x2 - 10x + 1025 voi x=1005
b, phan tich cac da thuc sau thanh nhan tu :
8x2 -2 x2 - 6x - y2 + 9
phan tich da thuc sau thanh nhan tu
xy(x+y) + yz(y+z) + xz(x+z) + 2xyz
tinh gia tri bieu thuc
3(x-3)(x+7) + (x-4)2 + 48 tai x = 0,5
chung minh rang
x2 - 6x + 10 >0 voi moi x
4x - x2 - 5 <0 voi moi x
1, xy(x+y)+yz(y+z)+xz(x+z)+2xyz
= x2y+xy2+y2z+yz2+x2z+xz2+2xyz
=(x2y+x2z+xz2+xyz) + ( xy2+y2z+yz2+xyz)
=x(xy+xz+z2+yz)+y(xy+yz+z2+xz)
=(xy+xz+yz+z2).(x+y)
=(x(y+z)+z(y+z)).(x+y)
=((y+z).(x+z)).(x+y)= (x+y)(x+z)(y+z)
2. 3(x-3)(x-7)+(x-4)2+48
=3(x2+4x-21)+x2-8x+16+48
=4x2-4x+1 = (2x-1)2
Thay x=0,5 vào bt trên, ta có : (2.0,5 -1)2=0
3, x2-6x+10
= x2-2.3.x+9+1
=(x-3)2+1 \(\ge\)1 >0 ( do (x-3)2 >=0 với mọi x)
=> x26x+10 >0 với mọi x
4x-x2-5
=-(x2-4x+5)
=- (x2-2.2x+4+1)
= - ((x-2)2+1) = -(x-2)2-1\(\le\)-1 < 0 ( do (x-2)2\(\ge\)0 với mọi x => - (x-2)2\(\le\)0 với mọi x)
vậy, 4x-x2-5<0 với mọi x
Ta có : x2 - 6x + 10
= x2 - 6x + 9 + 1
= (x - 3)2 + 1
Mà (x - 3)2 \(\ge0\forall x\)
Nên : (x - 3)2 + 1 \(\ge1\forall x\)
=> (x - 3)2 + 1 \(>0\)(đpcm)
Phan tich da thuc thanh nhan tu : x2 - 4x -y2+4
\(x^2-4x+4-y^2\)
\(=\left(x-2\right)^2-y^2\)
\(=\left(x-2-y\right)\left(x-2+y\right)\)
\(x^2-4x-y^2+4=\left(x-2\right)^2-y^2=\left(x-y-2\right)\left(x+y-2\right)\)
Phan tich da thuc thanh nhan tu : x2 - 4x -y2+4
\(x^2-4x+4-y^2\)
\(=\left(x-2\right)^2-y^2\)
\(=\left(x-2-y\right)\left(x-2+y\right)\)
\(=\left(x-2\right)^2-y^2=\left(x-y-2\right)\left(x+y-2\right)\)
1) Phan tich da thuc sau thanh nhan tu: x2-x-2008.2009
2) Chung minh rang voi moi x,y,z ta luon co: x2+4y2+z2>=2x+12y+4z
3) Cho a-b=4. Tinh gia tri cua bieu thuc: a3-12ab-b3
cac ban lam duoc cau nao thi giup mik nha. mik dang can gap lam
Phan tich da thuc thanh nhan tu
a) 3x2y - 6xy2
b) (2x - a) . x2 - (2x-a) . y
c) 25a2 - c2
d) 4 - 36x + 81x2
e) (x+7)2 -( 2x- 9)2
f) x2 - 6x +8
GIUP TUI VOI PLEASE <3 Tks
Giải:
a) \(3x^2y-6xy^2\)
\(=3xy\left(x-2y\right)\)
Vậy ...
b) \(\left(2x-a\right)x^2-\left(2x-a\right)y\)
\(=\left(2x-a\right)\left(x^2-y\right)\)
\(=\left(2x-a\right)\left(x-\sqrt{y}\right)\left(x+\sqrt{y}\right)\)
Vậy ...
c) \(25a^2-c^2\)
\(=\left(5a-c\right)\left(5a+c\right)\)
Vậy ...
d) \(4-36x+81x^2\)
\(=2^2-2.2.9x+\left(9x\right)^2\)
\(=\left(2-9x\right)^2\)
Vậy ...
e) \(\left(x+7\right)2-\left(2x-9\right)2\)
\(=2\left[\left(x+7\right)-\left(2x-9\right)\right]\)
\(=2\left(x+7-2x+9\right)\)
\(=2\left(16-x\right)\)
Vậy ...
f) \(x^2-6x+8\)
\(=x^2-6x+9-1\)
\(=\left(x-3\right)^2-1\)
\(=\left(x-4\right)\left(x-2\right)\)
Vậy ...
3.7: Su dung cac hang dang thuc de phan tich cac da thuc sau thanh nhan tu:
a) -y2 + 1/9
b) x4 - 256
c) 9 (x - 3)2 - 4 (x + 1)2
d) 25x2 - 1/81 x2y2
a) \(-y^2+\dfrac{1}{9}\)
\(=-\left(y^2-\left(\dfrac{1}{3}\right)^2\right)\)
\(=-\left(y+\dfrac{1}{3}\right)\left(y-\dfrac{1}{3}\right)\)
b) \(4^4-256\)
\(=4^4-4^4\)
\(=0\)
c) \(9\left(x-3\right)^2-4\left(x+1\right)^2\)
\(=\left(3x-9\right)^2-\left(2x+2\right)^2\)
\(=\left(3x-9+2x+2\right)\left(3x-9-2x-2\right)\)
\(=\left(5x-7\right)\left(x-11\right)\)
\(a,=\left(\dfrac{1}{3}-y\right)\left(\dfrac{1}{3}+y\right)\\ b,=\left(x^2-16\right)\left(x^2+16\right)\\ =\left(x-4\right)\left(x+4\right)\left(x^2+16\right)\\ c,=\left[3\left(x-3\right)-2\left(x+1\right)\right]\left[3\left(x-3\right)+2\left(x+1\right)\right]\\ =\left(3x-9-2x-2\right)\left(3x-9+2x+2\right)\\ =\left(x-11\right)\left(5x-7\right)\\ d,=\left(5x-\dfrac{1}{9}xy\right)\left(5x+\dfrac{1}{9}xy\right)=x^2\left(5-\dfrac{1}{9}y\right)\left(5+\dfrac{1}{9}y\right)\)
Phân tich da thuc thanh nhan tu
\(^{^{ }^2}\)x2-2xy+y2-2x+2y
\(=\left(x-y\right)^2-2\left(x-y\right)=\left(x-y\right)\left(x-y-2\right)\)
phan tich da thuc thanh nhan tu
x^2+6x+9
10x-25-x^2
8x^3-1/8
8x^3+12x^2+6xy^2+y^3
\(a,x^2+6x+9\)
\(=\left(x+3\right)^2\)
\(b,10x-25-x^2\)
\(=-\left(x^2-10x+25\right)\)
\(=-\left(x-5\right)^2\)
\(c,8x^3-\frac{1}{8}\)
\(=8x^3-\left(\frac{1}{2}\right)^3\)
\(=\left(8x-\frac{1}{2}\right)\left(64x^2+4x+\frac{1}{4}\right)\)
\(d,8x^3+12x^2+6xy^2+y^3\)
\(=2\left(4x^3+6x^2+3xy^2+\frac{1}{2}y^3\right)\)
hok tốt!
Điệp viên 007 sai c
c, \(8x^3-\frac{1}{8}=\left(2x\right)^3-\left(\frac{1}{2}\right)^3=\left(2x-\frac{1}{2}\right)\left(4x^2+x+\frac{1}{4}\right)\)
cho pt: x^2-12x+4=0 c hai nghiem phan biet x1,x2. Khong giai pt, hay tinh gia tri cua bieu thuc: T=x1^2+x2^2/canx1+can x2cho pt: x^2-12x+4=0 c hai nghiem phan biet x1,x2. Khong giai pt, hay tinh gia tri cua bieu thuc: T=x1^2+x2^2/canx1+can x2
Ta có: \(\Delta'=32>0\)
\(\Rightarrow\) Phương trình có 2 nghiệm phân biệt
Theo Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=12\\x_1x_2=4\end{matrix}\right.\)
Mặt khác: \(T=\dfrac{x_1^2+x^2_2}{\sqrt{x_1}+\sqrt{x_2}}\)
\(\Rightarrow T^2=\dfrac{x_1^4+x^4_2+2x_1^2x_2^2}{x_1+x_2+2\sqrt{x_1x_2}}=\dfrac{\left(x_1^2+x_1^2\right)^2}{x_1+x_2+2\sqrt{x_1x_2}}\) \(=\dfrac{\left[\left(x_1+x_2\right)^2-2x_1x_2\right]^2}{x_1+x_2+2\sqrt{x_1x_2}}=\dfrac{\left(12^2-2\cdot4\right)^2}{12+2\sqrt{4}}=1156\)
Mà ta thấy \(T>0\) \(\Rightarrow T=\sqrt{1156}=34\)