Cho góc α nhọn. Tìm giá trị lớn nhất của biểu thức :
\(A=3\sin\alpha+4\cos\alpha\)
Với giá trị nào của góc nhọn \(\alpha\)thì biểu thức P = \(3\sin\alpha+\sqrt{3}\cos\alpha\)có giá trị lớn nhất? Tìm giá trị lớn nhất đó?
\(=\sqrt{3}\left(\sqrt{3}sina+cosa\right)\)
\(=\sqrt{3}\cdot2\left(\frac{\sqrt{3}}{2}sina+\frac{1}{2}cosa\right)\)
\(=2\sqrt{3}\left(cos30sina+sin30cosa\right)\)
\(=2\sqrt{3}sin\left(a+30\right)\)
Ta có \(-1\le sin\left(a+30\right)\le1\)
\(-2\sqrt{3}\le2\sqrt{3}sin\left(a+30\right)\le2\sqrt{3}\)
P đạt GTLN
\(\Leftrightarrow2\sqrt{3}sin\left(a+30\right)=2\sqrt{3}\)
\(sin\left(a+30\right)=1\)
\(a+30=90+k360\) ( vì a góc nhọn nên bỏ k 360 độ đi )
\(a+30=90\)
\(a=60\)
Vậy P dạt GTLN là \(2\sqrt{3}\) \(\Leftrightarrow a=60\)
Câu 50**: Cho góc nhọn α tuỳ ý giá trị biểu thức \(\dfrac{tan\alpha}{cot\alpha}+\dfrac{cot\alpha}{tan\alpha}-\dfrac{sin^2\alpha}{cos^2\alpha}\)bằng
A. \(tan^2\alpha\) ; B . \(cot^2\) α ; C . 0 ; D. 1 .
giải hộ mik vs
Chứng minh rằng giá trị của biểu thức sau không phụ thuộc vào giá trị của góc nhọn \(\alpha\)
a) A = \(\frac{\cot^2\alpha-\cos^2\alpha}{\cot^2\alpha}-\frac{\sin\alpha.\cos\alpha}{\cot\alpha}\)
b) B = \(\left(\cos\alpha-\sin\alpha\right)^2+\left(\cos\alpha+\sin\alpha\right)^2+\cos^4\alpha-\sin^4\alpha-2\cos^2\alpha\)
c) C = \(\sin^6x+\cos^6x+3\sin^2x.\cos^2x\)
a/ \(A=\frac{cot^2a-cos^2a}{cot^2a}-\frac{sina.cosa}{cota}\)
\(=\frac{\frac{cos^2a}{sin^2a}-cos^2a}{\frac{cos^2a}{sin^2a}}-\frac{sina.cosa}{\frac{cosa}{sina}}\)
\(=\left(1-sin^2a\right)-sin^2a=1\)
b/ \(B=\left(cosa-sina\right)^2+\left(cosa+sina\right)^2+cos^4a-sin^4a-2cos^2a\)
\(=cos^2a-2cosa.sina+sin^2a+cos^2a+2cosa.sina+sin^2a+\left(cos^2a+sin^2a\right)\left(cos^2a-sin^2a\right)-2cos^2a\)
\(=2+\left(cos^2a-sin^2a\right)-2cos^2a\)
\(=2-sin^2a-cos^2a=2-1=1\)
c/ \(C=sin^6x+cos^6x+3sin^2x.cos^2x\)
\(=\left(sin^2x+cos^2x\right)\left(sin^4x-sin^2x.cos^2x+cos^4x\right)+3sin^2x.cos^2x\)
\(=sin^4x-sin^2x.cos^2x+cos^4x+3sin^2x.cos^2x\)
\(=sin^4x+cos^4x+2sin^2x.cos^2x\)
\(=\left(sin^2x+cos^2x\right)^2=1\)
Cho góc nhọn \(\alpha\)và \(\sin\alpha.\cos\alpha=\frac{1}{4}\)Tính giá trị của biểu thức \(\sin^4\alpha+\cos^4\alpha\)
\(\sin^4\alpha+\cos^4\alpha=\left(\sin^2\alpha+\cos^2\alpha\right)^2-2\sin^2\alpha.\cos^2\alpha=1-2.\frac{1}{4^2}=\frac{7}{8}\)
Tìm góc nhọn \(\alpha\)để biểu thức P=\(\sin^6\alpha+\cos^6\alpha\)đạt giá trị nhỏ nhất .Tìm giá trị nhỏ nhất đó
Cho góc α thõa mãn \(\cot\alpha=\frac{1}{3}\) Tính giá trị biểu thức T=\(\frac{2016}{\sin^{2^{ }}\alpha-\sin\alpha.\cos\alpha-\cos^{2^{ }}\alpha}\)
cotα = \(\frac{1}{3}\) \(\Leftrightarrow\frac{cos\alpha}{\sin\alpha}=\frac{1}{3}\Leftrightarrow\sin\alpha=3\cos\alpha\)
cotα =\(\frac{1}{\tan\alpha}=\frac{1}{3}\Rightarrow\tan\alpha=3\)
T = \(\frac{2016}{\sin^2\alpha-\sin\alpha\cos\alpha-\cos^2\alpha}=\frac{2016}{9\cos^2\alpha-3\cos^2\alpha-\cos^2\alpha}\) \(=\frac{2016}{5\cos^2\alpha}=\frac{2016}{5}\times\frac{1}{\cos^2\alpha}=\frac{2016}{5}\times\left(1+\tan^2\alpha\right)\) \(=\frac{2016}{5}\left(1+9\right)=4032\)
Cho cot α = 3. Tính giá trị của các biểu thức sau
a) \(A=\dfrac{3sin\alpha-cos\alpha}{2sin\alpha+cos\alpha}\)
b)\(B=\dfrac{sin^2\alpha-3sin\alpha.cos\alpha+2}{2sin^2\alpha+sin\alpha.cos\alpha+cos^2\alpha}\)
Giúp em với ạ, em đang cần gấp!
\(A=\dfrac{\dfrac{3sina}{sina}-\dfrac{cosa}{sina}}{\dfrac{2sina}{sina}+\dfrac{cosa}{sina}}=\dfrac{3-cota}{2+cota}=\dfrac{3-3}{2+3}=0\)
\(B=\dfrac{\dfrac{sin^2a}{sin^2a}-\dfrac{3sina.cosa}{sin^2a}+\dfrac{2}{sin^2a}}{\dfrac{2sin^2a}{sin^2a}+\dfrac{sina.cosa}{sin^2a}+\dfrac{cos^2a}{sin^2a}}=\dfrac{1-3cota+2\left(1+cot^2a\right)}{2+cota+cot^2a}=\dfrac{1-3.3+2\left(1+3^2\right)}{2+3+3^2}=...\)
a. \(A=\dfrac{3sin\alpha-cos\alpha}{2sin\alpha+cos\alpha}=\dfrac{3\dfrac{sin\alpha}{cos\alpha}-1}{2\dfrac{sin\alpha}{cos\alpha}+1}=\dfrac{3.\dfrac{1}{3}-1}{2.\dfrac{1}{3}+1}=0\)
b.\(B=\dfrac{sin^2\alpha-3sin\alpha.cos\alpha+2}{2sin^2\alpha+sin\alpha.cos\alpha+cos^2\alpha}\)\(=\dfrac{1-\dfrac{3cos\alpha}{sin\alpha}+\dfrac{2}{sin^2\alpha}}{2+\dfrac{cos\alpha}{sin\alpha}+\dfrac{cos^2\alpha}{sin^2\alpha}}=\dfrac{1-3.3+\dfrac{2}{sin^2\alpha}}{2+3+3^2}\)
Mà \(\dfrac{cos\alpha}{sin\alpha}=3,cos^2\alpha+sin^2\alpha=1\Rightarrow sin^2\alpha=\dfrac{1}{10}\)
\(B=\dfrac{1-3.3+\dfrac{2}{\dfrac{1}{10}}}{2+3+3^2}=\dfrac{6}{7}\)
Tính giá trị của biểu thức
\(1+2\cos\alpha+3\cos^2\alpha+4\cos^3\alpha.\)
Nếu \(\alpha\)là góc nhọn sao cho \(3\sin\alpha+\cos\alpha=2\)
Ta có:
\(\hept{\begin{cases}3sina+cosa=2\\sin^2a+cos^2a=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}cosa=2-3sina\left(1\right)\\sin^2a+\left(2-3sina\right)^2=1\left(2\right)\end{cases}}\)
\(\left(2\right)\Leftrightarrow10sin^2a-12sina+3=0\)
\(\Leftrightarrow\orbr{\begin{cases}sina=\frac{3}{5}+\frac{\sqrt{6}}{10}\\sina=\frac{3}{5}-\frac{\sqrt{6}}{10}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}cosa=\frac{1}{5}-\frac{3.\sqrt{6}}{10}\left(l\right)\\cosa=\frac{1}{5}+\frac{3.\sqrt{6}}{10}\end{cases}}\)
Thế vô tính tiếp
Biết cot α=\(\sqrt{5}\). Tính giá trị biểu thức: A=\(\dfrac{\sin^2\alpha+\cos^2\alpha}{\sin\alpha.\cos\alpha}\)
Ta có: \(cot\alpha=\dfrac{cos\alpha}{sin\alpha}=\dfrac{cos^2\alpha}{sin\alpha.cos\alpha}=\sqrt{5}\)
Lại có: \(\dfrac{1}{cot\alpha}=tan\alpha=\dfrac{sin\alpha}{cos\alpha}=\dfrac{sin^2\alpha}{cos\alpha.sin\alpha}=\dfrac{1}{\sqrt{5}}\)
\(\Rightarrow A=\dfrac{cos^2\alpha}{sin\alpha.cos\alpha}+\dfrac{sin^2\alpha}{sin\alpha.cos\alpha}=\sqrt{5}+\dfrac{1}{\sqrt{5}}=\dfrac{6}{\sqrt{5}}=\dfrac{6\sqrt{5}}{5}\)
Ta có : cot α = \(\sqrt{5}\Rightarrow\dfrac{cos\alpha}{sin\alpha}=\sqrt{5}\Rightarrow cos\alpha=\sqrt{5}.sin\alpha\)
\(A=\dfrac{sin^2\alpha+cos^2\alpha}{sin\alpha.cos\alpha}\)
\(A=\dfrac{sin^2\alpha+\left(\sqrt{5}sin\alpha\right)^2}{sin\alpha.\sqrt{5}sin\alpha}=\dfrac{sin^2\alpha+5sin^2\alpha}{\sqrt{5}sin^2\alpha}\)
\(A=\dfrac{6sin^2\alpha}{\sqrt{5}sin^2\alpha}=\dfrac{6}{\sqrt{5}}=\dfrac{6\sqrt{5}}{5}\)
Cho góc \(\alpha\)nhọn thỏa mãn \(\tan\alpha=\frac{1}{3}\)
Giá trị của biểu thức A = \(\frac{\sin^2\alpha+\cos^2\alpha}{1+2\sin\alpha\cos\alpha}\) là:
\(tan\alpha=\dfrac{1}{3}\Rightarrow\dfrac{sin\alpha}{cos\alpha}=\dfrac{1}{3}\Rightarrow cos\alpha=3sin\alpha\)
Thay cosa=3sina vào A, được:
\(A=\dfrac{sin^2a+9sin^2a}{sin^2a+9sin^2a+6sin^2a}=\dfrac{10sin^2a}{16sin^2a}=\dfrac{5}{8}\)