Chứng minh x^4+x^3+3x^2-2x+2 luôn dương với mọi x
chứng minh rằng: x^4-x^3+3x^2-2x+2 luôn dương với mọi x
Đặt A=x^4-x^3+3x^2-2x+2
=(x^4+3x^2+2)-(x^3+2x)
=(x^4+x^2+2x^2+2)-x(x^2+2)
=(x^2+1)(x^2+2)-x(x^2+2)
=(x^2+2)(x^2-x+1)
Ta có x^2+2>=2>0;
x^2-x+1=(x^2-x+1/4)+3/4 =(x-1/2)^2+3/4>=3/4>0
=> A>0
chứng minh
a) x2 + 2x +3 luôn dương với mọi x
b) x2 - 3x +5 luôn dương với mọi x
c) - x2 + 4x - 5 luôn âm với mọi x
d) -3x - 6x -7 luôn âm với mọi x
Chứng minh biểu thức: (3x4 + 2x3 - 4x2 - 6x -15) : (x2 - 3) luôn dương với mọi số thực x
Chứng minh rằng biểu thức A=(8x/(9x^2-4)-2x/(3x+2))/-[6/(9x^2-4)]+2 luôn dương với mọi x thuộc tập xác định.
chứng minh đa thức sau luôn dương với mọi giá trị của x
x^4-x^3+3x^2-2x+2
vẫn thế sao chả hiểu lổi cái dạng này ý nhỉ
x4 - x3 + 3x2 - 2x + 2
= x4 - x3 + x2 + 2x2 - 2x + 2
= x2(x2 - x + 1) + 2(x2 - x + 1)
= (x2 + 2)(x2 - x + 1)
= (x2 + 2)(x2 - x + 1/4 + 3/4)
= (x2 + 2)[(x - 1/2)2 + 3/4]
x2 + 2 lớn hơn hoặc bằng 2
(x - 1/2)2 + 3/4 lớn hoăn hoặc bằng 3/4
(x2 + 2)[(x - 1/2)2 + 3/4] lớn hơn hoặc bằng 3/2 > 0 (đpcm)
Bài 5: Chứng minh biểu thức luôn dương hoặc âm với mọi x
A = x^2 - x +1
B = 3x^2 - 2x + 5
C = x(6 – x) -14
chứng minh rằng:
x2+x+3 luôn có giá trị dương ới mọi x-2x2+3x-8 luôn không nhận giá trị dương ới mọi x\(x^2+x+3=x^2+2.\frac{1}{2}.x+\frac{1}{4}+\frac{11}{4}=\left(x+\frac{1}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}>0\) luôn dương với mọi x
------------------
\(-2x^2+3x-8=2\left(-x^2+\frac{3}{2}x-4\right)=2\left[-x^2+2.\frac{3}{4}.x-\frac{9}{16}-\frac{55}{16}\right]=2\left[-\left(x-\frac{3}{4}\right)^2-\frac{55}{16}\right]\)
\(=2\left[-\left(x-\frac{3}{4}\right)^2-\frac{55}{16}\right]\le-\frac{55}{15}< 0\) luôn âm với mọi x
Chứng minh biểu thức không phụ thuộc vào biến x,y
a, A= (3x-5)(2x+11)-(2x+3)(3x+7)
b, B=(x-1)2+(x+1)2-2(x+1)(x-1)
Chứng minh
a, A=x(x-6)+10 luôn luôn dương với mọi x
b, B=x2-2x+9y2-6y+3
Chứng minh bt k phụ thuộc vào biến:
a) \(A=\left(3x-5\right)\left(2x+11\right)-\left(2x+3\right)\left(3x+7\right)\)
\(=6x^2+33x-10x-55-6x^2-14x-9x-21=-76\)
Vậy giá trị của A k phụ thuộc vào biến
b) \(\left(x-1\right)^2+\left(x+1\right)^2-2\left(x+1\right)\left(x-1\right)\)
\(=\left[\left(x-1\right)-\left(x+1\right)\right]^2=\left(x-1-x-1\right)^2=-2^2=4\)
Vậy giá trị của bt B k phụ thuộc vào biến
Chứng minh luôn luôn dương:
a) \(A=x\left(x-6\right)+10=x^2-6x+9+1=\left(x-3\right)^2+1\)
Vì: \(\left(x-3\right)^2\ge0,\forall x\)
=> \(\left(x-3\right)^2+1>0,\forall x\)
=>đpcm
b) \(B=x^2-2x+9y^2-6y+3=\left(x^2-2x+1\right)+\left(9y^2-6y+1\right)+1=\left(x-1\right)^2+\left(3y-1\right)^2+1\)
Vì: \(\left(x-1\right)^2\ge0,\forall x;\left(3y-1\right)^2\ge0,\forall y\)
=> \(\left(x-1\right)^2+\left(3y-1\right)^2\ge0,\forall x,y\)
=> \(\left(x-1\right)^2+\left(3y-1\right)^2+1>0\)
=>đpcm
chứng minh biểu thức luôn dương với mọi x :
a)3x^2-5x+3
b)2x^2+4x+3
a) vì 3x2 \(\ge0\) => 3x2 \(\ge-5x\) ; 3 \(\ge0\)
=> đa thức 3x2 - 5x + 3 > 0
t i c k nhé!! 4543545656456475678768769898968674745764553364578768568
3-5+3 =1 do đó kq luôn dương
vô cùng ngắn gọn nhưng nớ đó là mẹo chứ chớ trình bầy khi làm
ko cô bảo =nôn côn nha =)
a, \(3x^2-5x+3=0\)
\(\Leftrightarrow\hept{\begin{cases}3x^2\ge0\\3x^2\ge-5x\\3>0\end{cases}}\)=> pt luôn dương
b, \(2x^2+4x+3=0\)
\(\Leftrightarrow\hept{\begin{cases}2x^2\ge0\\2x^2\ge4x\\3>0\end{cases}}\)=> pt luôn dương
Chứng minh các biểu thức sau luôn có giá trị dương với mọi giá trị của biến: a) 1/4 x -x² +2 b) 3x + 2x² +1 c) 9x² -12x + 5 d) ( x+2)² +(x-2)²
a: Sửa đề: 1/4x+x^2+2
x^2+1/4x+2
=x^2+2*x*1/8+1/64+127/64
=(x+1/8)^2+127/64>=127/64>0 với mọi x
=>ĐPCM
b: 2x^2+3x+1
=2(x^2+3/2x+1/2)
=2(x^2+2*x*3/4+9/16-1/16)
=2(x+3/4)^2-1/8
Biểu thức này ko thể luôn dương nha bạn
c: 9x^2-12x+5
=9x^2-12x+4+1
=(3x-2)^2+1>=1>0 với mọi x
d: (x+2)^2+(x-2)^2
=x^2+4x+4+x^2-4x+4
=2x^2+8>=8>0 với mọi x