Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
ton nguyen bao chau
Xem chi tiết
Hoàng Nguyễn Văn
30 tháng 11 2019 lúc 23:02

Đặt A=x^4-x^3+3x^2-2x+2

=(x^4+3x^2+2)-(x^3+2x)

=(x^4+x^2+2x^2+2)-x(x^2+2)

=(x^2+1)(x^2+2)-x(x^2+2)

=(x^2+2)(x^2-x+1)

Ta có x^2+2>=2>0;

x^2-x+1=(x^2-x+1/4)+3/4 =(x-1/2)^2+3/4>=3/4>0 

=> A>0  

Khách vãng lai đã xóa
Nguyễn Thanh Xuân
Xem chi tiết
Nhi Do
Xem chi tiết
Doãn Lê Thành
Xem chi tiết
Lai Thi Thuy Linh
Xem chi tiết
Phương An
15 tháng 10 2016 lúc 17:59

x4 - x3 + 3x2 - 2x + 2

= x4 - x3 + x2 + 2x2 - 2x + 2

= x2(x2 - x + 1) + 2(x2 - x + 1)

= (x2 + 2)(x2 - x + 1)

= (x2 + 2)(x2 - x + 1/4 + 3/4)

= (x2 + 2)[(x - 1/2)2 + 3/4]

x2 + 2 lớn hơn hoặc bằng 2

(x - 1/2)2 + 3/4 lớn hoăn hoặc bằng 3/4

(x2 + 2)[(x - 1/2)2 + 3/4] lớn hơn hoặc bằng 3/2 > 0 (đpcm)

Ngọc Khánh
Xem chi tiết
Phan Duy Truong
Xem chi tiết
Trà My
21 tháng 2 2017 lúc 22:43

\(x^2+x+3=x^2+2.\frac{1}{2}.x+\frac{1}{4}+\frac{11}{4}=\left(x+\frac{1}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}>0\) luôn dương với mọi x

------------------

\(-2x^2+3x-8=2\left(-x^2+\frac{3}{2}x-4\right)=2\left[-x^2+2.\frac{3}{4}.x-\frac{9}{16}-\frac{55}{16}\right]=2\left[-\left(x-\frac{3}{4}\right)^2-\frac{55}{16}\right]\)

\(=2\left[-\left(x-\frac{3}{4}\right)^2-\frac{55}{16}\right]\le-\frac{55}{15}< 0\) luôn âm với mọi x

Phan Ngọc Thùy Linh
Xem chi tiết
Trần Việt Linh
18 tháng 12 2016 lúc 12:56

Chứng minh bt k phụ thuộc vào biến:

a) \(A=\left(3x-5\right)\left(2x+11\right)-\left(2x+3\right)\left(3x+7\right)\)

\(=6x^2+33x-10x-55-6x^2-14x-9x-21=-76\)

Vậy giá trị của A k phụ thuộc vào biến

b) \(\left(x-1\right)^2+\left(x+1\right)^2-2\left(x+1\right)\left(x-1\right)\)

\(=\left[\left(x-1\right)-\left(x+1\right)\right]^2=\left(x-1-x-1\right)^2=-2^2=4\)

Vậy giá trị của bt B k phụ thuộc vào biến

Chứng minh luôn luôn dương:

a) \(A=x\left(x-6\right)+10=x^2-6x+9+1=\left(x-3\right)^2+1\)

Vì: \(\left(x-3\right)^2\ge0,\forall x\)

=> \(\left(x-3\right)^2+1>0,\forall x\)

=>đpcm

b) \(B=x^2-2x+9y^2-6y+3=\left(x^2-2x+1\right)+\left(9y^2-6y+1\right)+1=\left(x-1\right)^2+\left(3y-1\right)^2+1\)

Vì: \(\left(x-1\right)^2\ge0,\forall x;\left(3y-1\right)^2\ge0,\forall y\)

=> \(\left(x-1\right)^2+\left(3y-1\right)^2\ge0,\forall x,y\)

=> \(\left(x-1\right)^2+\left(3y-1\right)^2+1>0\)

=>đpcm

Nguyễn Đức Quang Tuan
Xem chi tiết
Oo Bản tình ca ác quỷ oO
29 tháng 7 2016 lúc 20:02

a) vì 3x2 \(\ge0\) => 3x2 \(\ge-5x\) ; 3 \(\ge0\)

=> đa thức 3x2 - 5x + 3 > 0

t i c k nhé!! 4543545656456475678768769898968674745764553364578768568

Nguyễn Văn Nguyênn
11 tháng 7 2020 lúc 13:33

3-5+3 =1 do đó kq luôn dương 

vô cùng ngắn gọn nhưng nớ đó là mẹo chứ chớ trình bầy khi làm 

ko cô bảo =nôn côn nha =)

Khách vãng lai đã xóa
๖²⁴ʱんuリ イú❄✎﹏
11 tháng 7 2020 lúc 15:48

a, \(3x^2-5x+3=0\)

\(\Leftrightarrow\hept{\begin{cases}3x^2\ge0\\3x^2\ge-5x\\3>0\end{cases}}\)=> pt luôn dương 

b, \(2x^2+4x+3=0\)

\(\Leftrightarrow\hept{\begin{cases}2x^2\ge0\\2x^2\ge4x\\3>0\end{cases}}\)=> pt luôn dương 

Khách vãng lai đã xóa
Thuytiev
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 8 2023 lúc 11:23

a: Sửa đề: 1/4x+x^2+2

x^2+1/4x+2

=x^2+2*x*1/8+1/64+127/64

=(x+1/8)^2+127/64>=127/64>0 với mọi x

=>ĐPCM

b: 2x^2+3x+1

=2(x^2+3/2x+1/2)

=2(x^2+2*x*3/4+9/16-1/16)

=2(x+3/4)^2-1/8 

Biểu thức này ko thể luôn dương nha bạn

c: 9x^2-12x+5

=9x^2-12x+4+1

=(3x-2)^2+1>=1>0 với mọi x

d: (x+2)^2+(x-2)^2

=x^2+4x+4+x^2-4x+4

=2x^2+8>=8>0 với mọi x