\(A=\frac{3m^3+6m^2}{m^3+2m^2+m+2}\)
a, tìm điều kiện xá định
b, rút gọn
c, tìm m để A=3
B=\(\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{4}{x-2\sqrt{x}}\right)\dfrac{1}{\sqrt{x}-2}\)
a)Tìm điều kiện xác định
b)Rút gọn
c) tìm B khi x=16
d)tìm điều kiện để B>0
\(a,dkxd:x\ge0,x\ne4\)
\(b,B=\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{4}{x-2\sqrt{x}}\right)\dfrac{1}{\sqrt{x}-2}\\ =\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{4}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\dfrac{1}{\sqrt{x}-2}\\ =\dfrac{\sqrt{x^2}-4}{\sqrt{x}\left(\sqrt{x}-2\right)}.\dfrac{1}{\sqrt{x}-2}\\ =\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)^2}\\ =\dfrac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(c,x=16\left(tm\right)\Rightarrow B=\dfrac{\sqrt{16}+2}{\sqrt{16}\left(\sqrt{16}-2\right)}=\dfrac{4+2}{4\left(4-2\right)}=\dfrac{6}{8}=\dfrac{3}{4}\)
\(d,B>0\Leftrightarrow\dfrac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-2\right)}>0\Leftrightarrow\sqrt{x}+2>0\Leftrightarrow\sqrt{x}>-2\left(ktm\right)\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-2\right)< 0\Leftrightarrow\sqrt{x}< 2\Leftrightarrow x< 4\)
Kết hợp với \(dk:x\ge0\) ta kết luận \(0\le x< 4\) thì \(B>0\).
a) Điều kiện xác định:
\(\left\{{}\begin{matrix}x-2\sqrt{x}\ne0\\x\ge0\end{matrix}\right.\)\(\Leftrightarrow x>0,x\ne4\)
Vậy...
b) \(B=\dfrac{\sqrt{x}.\sqrt{x}-4}{\sqrt{x}\left(\sqrt{x}-2\right)}.\dfrac{1}{\sqrt{x}-2}\)
\(=\dfrac{x-4}{\sqrt{x}\left(\sqrt{x}-2\right)^2}=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)^2}\)\(=\dfrac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
Vậy \(B=\dfrac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
c) Tại x=16 ( thỏa mãn đk) thay vào B đã rút gọn ta được:
\(B=\dfrac{\sqrt{16}+2}{\sqrt{16}\left(\sqrt{16}-2\right)}=\dfrac{3}{4}\)
d) \(B>0\Leftrightarrow\dfrac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-2\right)}>0\)
\(\Leftrightarrow\sqrt{x}-2>0\)\(\Leftrightarrow\sqrt{x}>2\Leftrightarrow x>4\)
Vậy x>4 thì B>0
M=(\(\dfrac{2-a\sqrt{a}}{2-\sqrt{a}}\)+\(\sqrt{a}\)).(\(\dfrac{2-\sqrt{a}}{2-a}\))
a) tìm điều kiện của a để biểu thức M xác định
b) rút gọn M
c) tìm a để M=5
\(a,\left(d\right)\)//\(\left(d'\right)\)\(\Leftrightarrow\left\{{}\begin{matrix}2m-3=m\\-m+2\ne3m-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=3\\m\ne\dfrac{3}{2}\end{matrix}\right.\Leftrightarrow m=3\)
b, (d) cắt (d') \(\Leftrightarrow2m-3\ne m\Leftrightarrow m\ne3\)
Cho biểu thức:M= x^3/x^2-4 - x/x-2 - 2/x+2
a) Tìm điều kiện để biểu thức M xác định
b) Rút gọn M
\(a,x\ne\pm2\\ b,\\ =\dfrac{x^3-x\left(x+2\right)-2\left(x-2\right)}{x^2-4}\\ =\dfrac{x^3-x^2-2x-2x+4}{x^2-4}=\dfrac{x^3-4x-x^2+4}{x^2-4}\\ =\dfrac{x\left(x^2-4\right)-\left(x^2-4\right)}{x^2-4}=\dfrac{\left(x^2-4\right)\left(x-1\right)}{x^2-4}\\ =x-1\)
cho phân thức:
p=\(\frac{2m+\sqrt{16m+6}}{m+2\sqrt{m-3}}+\frac{\sqrt{m-2}}{\sqrt{m-1}}+\frac{3}{\sqrt{m+3}}-2\)
a) tìm điều kiện xác định của p
b) rút gọn p
c) tìm giá trị tự nhiên của m để p là số tự nhiên
A=x^4-2x^2+1chia tất cả cho x^3-3x-2
a) tìm điều kiện x để A là giá trị xác định
b) rút gọn A
c) tìm x để A<1
a: ĐKXĐ: x^3-3x-2<>0
=>x^3-x-2x-2<>0
=>x(x-1)(x+1)-2(x+1)<>0
=>(x+1)(x-2)(x+1)<>0
=>x<>2 và x<>-1
b: \(A=\dfrac{\left(x-1\right)^2\cdot\left(x+1\right)^2}{\left(x-2\right)\left(x+1\right)^2}=\dfrac{\left(x-1\right)^2}{x-2}\)
c:
A<1
=>A-1<0
\(A-1=\dfrac{x^2-2x+1-x+2}{x-2}=\dfrac{x^2-3x+3}{x-2}\)
=>x-2<0
=>x<2
A = (\(\dfrac{\left(\sqrt{x}\right)}{\sqrt{x}-2}\) + \(\dfrac{\sqrt{x}}{\sqrt{x}+2}\)) : \(\dfrac{\sqrt{4x}}{x-4}\)
a) Tìm điều kiện xác định
b) Rút gọn A
c) Tìm x để A < 3
`a)ĐKXĐ:{(x > 0),(x \ne 4):}`
`b)` Với `x > 0,x \ne 4` có:
`A=[\sqrt{x}(\sqrt{x}+2)+\sqrt{x}(\sqrt{x}-2)]/[x-4].[x-4]/[\sqrt{4x}]`
`A=[x-2\sqrt{x}+x-2\sqrt{x}]/[2\sqrt{x}]`
`A=[2\sqrt{x}(\sqrt{x}-2)]/[2\sqrt{x}]=\sqrt{x}-2`
`c)` Với `x > 0,x \ne 4` có:
`A < 3 <=>\sqrt{x}-2 < 3<=>\sqrt{x} < 5<=>x < 25`
Kết hợp đk
`=>0 < x < 25 ,x \ne 4`
A=x^4-2x^2+1chia tất cả cho x^3-3x-2
a) tìm điều kiện x để A là giá trị xác định
b) rút gọn A
c) tìm x để A<1
giải gaasp ạ
a: DKXĐ: x^3-3x-2<>0
=>x^3-x-2x-2<>0
=>x(x-1)(x+1)-2(x+1)<>0
=>(x+1)(x^2-x-2)<>0
=>(x+1)(x-2)(x+1)<>0
=>\(x\notin\left\{2;-1\right\}\)
b: \(A=\dfrac{\left(x-1\right)^2\left(x+1\right)^2}{\left(x+1\right)^2\left(x-2\right)}=\dfrac{\left(x-1\right)^2}{x-2}\)
c: Để A<1 thì A-1<0
=>\(\dfrac{x^2-2x+1-x+2}{x-2}< 0\)
=>x-2<0
=>x<2
bài 1:Cho M=(1+$\frac{a}{a^{2}+1}$) :($\frac{a}{a^{2}-1}$-$\frac{2a}{a^{3}-a^{2}+a-1}$ )
a)tìm điều kiện xác định
b)rút gọn M
bài 2:cho f(x)=2$x^{2}$+ax+1 và g(x)=x-3
tìm a để f(x):g(x) dư 4