Giải phương trình
\(13\sqrt{5-x}+18\sqrt{x+8}=61+x+3\sqrt{\left(5-x\right)\left(x+8\right)}\)
mn giúp em vs ạ
Giải phương trình sau giúp mk vs:
a)\(\frac{2x-\frac{4-5x}{5}}{15}=\frac{7x-\frac{x-3}{2}}{5}x+1\)
\(\frac{7x-\frac{x-3}{2}}{5}-x+1nha.Mình,nhầm\)
Anh ko ghi lại đề nha em gái !
\(\Leftrightarrow\frac{\left(\frac{10x-4+5x}{5}\right)}{15}=\frac{\left(\frac{14x-x+3}{2}\right).x}{5}+1\)
\(\Leftrightarrow\frac{\left(\frac{15x-4}{5}\right)}{15}=\frac{\left(\frac{13x^2+3x}{2}\right)}{5}+1\)
\(\Leftrightarrow\frac{\left(\frac{15x-4}{5}\right)}{15}=\frac{\left(\frac{39x^2+9x}{2}\right)+15}{15}\)
\(\Leftrightarrow\frac{15x-4}{5}=\frac{39x^2+9x+30}{2}\)
\(\Leftrightarrow2.\left(15x-4\right)=5.\left(39x^2+9x+30\right)\)
\(\Leftrightarrow30x-8=195x^2+45x+150\)
\(\Leftrightarrow-195x^2-15x-158=0\)
\(\left(a=-195;b=-15;c=-158\right)\)
\(\Delta=b^2-4ac\)
\(=\left(-15\right)^2-4.\left(-195\right).\left(-158\right)=-123015< 0\)
Vì \(\Delta< 0\) nên phương trình vô nghiệm.
Nếu có gì thắc mắc về bài này cứ hỏi anh !
\(\frac{2x-\frac{4-5x}{5}}{15}=\frac{7x-\frac{x-3}{2}}{5}-x+1\)
\(\Leftrightarrow15x=-203\)
\(\Leftrightarrow x=-\frac{203}{15}\)
Giải các phương trình sau:
1/(x+2)(x+3)(x-7)(x-8)=144
2/ (6x+5)^2(3x+2)(x+1)=35
3/ (x-4)(x - 5)(x-8)(x-10) = 72^2
4/ (x+10)(x+12)(x+15)(x+18) =2x^2
Mong mọi người giúp đỡ ạ (´ε` )(。’▽’。)♡
`1)(x+2)(x+3)(x-7)(x-8)=144`
`<=>[(x+2)(x-7)][(x+3)(x-8)]=144`
`<=>(x^2-5x-14)(x^2-5x-24)=144`
`<=>(x^2-5x-19)^2-25=144`
`<=>(x^2-5x-19)^2-169=0`
`<=>(x^2-5x-6)(x^2-5x-32)=0`
`+)x^2-5x-6=0`
`<=>` $\left[ \begin{array}{l}x=6\\x=-1\end{array} \right.$
`+)x^2-5x-32=0`
`<=>` $\left[ \begin{array}{l}x=\dfrac{5+3\sqrt{17}}{2}\\x=\dfrac{5-3\sqrt{17}}{2}\end{array} \right.$
Vậy `S={-1,6,\frac{5+3\sqrt{17}}{2},\frac{5-3\sqrt{17}}{2}}`
1: Ta có: \(\left(x+2\right)\left(x+3\right)\left(x-7\right)\left(x-8\right)=144\)
\(\Leftrightarrow\left(x^2-7x+2x-14\right)\left(x^2-8x+3x-24\right)=144\)
\(\Leftrightarrow\left(x^2-5x-14\right)\left(x^2-5x-24\right)-144=0\)
\(\Leftrightarrow\left(x^2-5x\right)^2-38\left(x^2-5x\right)+336-144=0\)
\(\Leftrightarrow\left(x^2-5x\right)^2-38\left(x^2-5x\right)+192=0\)
\(\Leftrightarrow\left(x^2-5x\right)^2-6\left(x^2-5x\right)-32\left(x^2-5x\right)+192=0\)
\(\Leftrightarrow\left(x^2-5x\right)\left(x^2-5x-6\right)-32\left(x^2-5x-6\right)=0\)
\(\Leftrightarrow\left(x^2-5x-6\right)\left(x^2-5x-32\right)=0\)
\(\Leftrightarrow\left(x-6\right)\left(x+1\right)\left(x^2-5x-32\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\x+1=0\\x^2-5x-32=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-1\\x=\dfrac{5-3\sqrt{17}}{2}\\x=\dfrac{5+3\sqrt{17}}{2}\end{matrix}\right.\)
Vậy: \(S=\left\{6;-1;\dfrac{5-3\sqrt{17}}{2};\dfrac{5+3\sqrt{17}}{2}\right\}\)
`2)(6x+5)^2(3x+2)(x+1)=35`
`<=>12(6x+5)^2(3x+2)(x+1)=420`
`<=>(6x+5)^2+(6x+4)(6x+6)=420`
Đặt `6x+5=a`
`pt<=>a^2(a+1)(a-1)=420`
`<=>a^2(a^2-1)-420=0`
`<=>a^4-a^2-420=0`
`<=>` $\left[ \begin{array}{l}a^2=-20(False)\\a^2=21(True)\end{array} \right.$
`<=>` $\left[ \begin{array}{l}a=\sqrt{20}\\a=-\sqrt{20}\end{array} \right.$
`<=>` $\left[ \begin{array}{l}6x+5=\sqrt{20}\\6x+5=-\sqrt{20}\end{array} \right.$
`<=>` $\left[ \begin{array}{l}x=\dfrac{\sqrt{20}-5}{6}\\x=\dfrac{-\sqrt{20}-5}{6}\end{array} \right.$
Vậy `S={\frac{\sqrt{20}-5}{6},\frac{-\sqrt{20}-5}{6}}`
\(\dfrac{1}{5}\)\(\sqrt{25x+50}\) - 5\(\sqrt{x+2}\) + \(\sqrt{9x+18}\) + 9 = 0 ( Giải phương trình sau )
Mong mng giúp đỡ ạ!
\(\dfrac{1}{5}\sqrt[]{25x+50}-5\sqrt[]{x+2}+\sqrt[]{9x+18}+9=0\)
\(\Leftrightarrow\dfrac{1}{5}\sqrt[]{25\left(x+2\right)}-5\sqrt[]{x+2}+\sqrt[]{9\left(x+2\right)}+9=0\)
\(\Leftrightarrow\dfrac{1}{5}.5\sqrt[]{x+2}-5\sqrt[]{x+2}+3\sqrt[]{x+2}+9=0\)
\(\Leftrightarrow\sqrt[]{x+2}-5\sqrt[]{x+2}+3\sqrt[]{x+2}+9=0\)
\(\Leftrightarrow\sqrt[]{x+2}\left(1-5+3\right)+9=0\)
\(\Leftrightarrow-\sqrt[]{x+2}+9=0\)
\(\Leftrightarrow\sqrt[]{x+2}=9\)
\(\Leftrightarrow x+2=81\)
\(\Leftrightarrow x=79\)
giải hộ mk phương trình này vs
3(x-2)căn x^3-1=x^3+x^2-17x+18
Đk:\(x\ge1\)
\(pt\Leftrightarrow3\left(x-2\right)\sqrt{x-1}\sqrt{x^2+x+1}+18\left(x-1\right)=x\left(x^2+x+1\right)\)
Chia 2 vế của pt cho \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)ta đc:
\(3\left(x-2\right)\frac{\sqrt{x-1}}{\sqrt{x^2+x+1}}+\frac{18\left(x-1\right)}{x^2+x+1}=x\)
Đặt \(y=\frac{\sqrt{x-1}}{\sqrt{x^2+x+1}}\left(y\ge0\right)\) pt trở thành
\(3\left(x-2\right)y+18y^2-x=0\)
\(\Leftrightarrow\left(3y-1\right)\left(6y+x\right)=0\)
\(\Leftrightarrow3y-1=0\left(y\ge0;x\ge1\Rightarrow6y+x\ge1\right)\)
\(\Leftrightarrow y=\frac{1}{3}\)\(\Leftrightarrow\frac{\sqrt{x-1}}{\sqrt{x^2+x+1}}=\frac{1}{3}\)
\(\Leftrightarrow9\left(x-1\right)=x^2+x+1\)
\(\Leftrightarrow x^2-8x+10=0\)
\(\Leftrightarrow x=4\pm\sqrt{6}\)
Vậy...
6/x-5+2/x-8=18/(x-5)(8-x)-1 giúp mik giải phương trình này dùng mik tick cho
1.Giải các phương trình sau : a,7x+35=0 b, 8-x/x-7 -8 =1/x-7 2.giải bất phương trình sau : 18-3x(1-x)_< 3x^2-3x
a: 7x+35=0
=>7x=-35
=>x=-5
b: \(\dfrac{8-x}{x-7}-8=\dfrac{1}{x-7}\)
=>8-x-8(x-7)=1
=>8-x-8x+56=1
=>-9x+64=1
=>-9x=-63
hay x=7(loại)
a, \(7x=-35\Leftrightarrow x=-5\)
b, đk : x khác 7
\(8-x-8x+56=1\Leftrightarrow-9x=-63\Leftrightarrow x=7\left(ktm\right)\)
vậy pt vô nghiệm
2, thiếu đề
1.
\(a,7x+35=0\\ \Rightarrow7x=-35\\ \Rightarrow x=-5\\ b,ĐKXĐ:x\ne7\\ \dfrac{8-x}{x-7}-8=\dfrac{1}{x-7}\\ \Leftrightarrow\dfrac{8-x}{x-7}-\dfrac{8\left(x-7\right)}{x-7}-\dfrac{1}{x-7}=0\\ \Leftrightarrow\dfrac{8-x-8x+56-1}{x-7}=0\\ \Rightarrow-9x+63=0\\ \Leftrightarrow-9x=-63\\ \Leftrightarrow x=7\left(ktm\right)\)
2.đề thiếu
\(25\sqrt{\dfrac{x-3}{25}}-7\sqrt{\dfrac{4x-12}{9}}-7\sqrt{x^2-9}+18\sqrt{\dfrac{9x^2-81}{81}}=0\)
Giải phương trình.
giúp e với ạaa :< gấp aa :((
\(25\sqrt{\dfrac{x-3}{25}}-7\sqrt{\dfrac{4x-12}{9}}-7\sqrt{x^2-9}+18\sqrt{\dfrac{9x^2-81}{81}}=0\left(x\ge3\right)\)
\(=25\sqrt{\dfrac{1}{25}.\left(x-3\right)}-7\sqrt{\dfrac{4}{9}.\left(x-3\right)}-7\sqrt{x^2-9}+18\sqrt{\dfrac{1}{9}.\left(x^2-9\right)}=0\)
\(=5\sqrt{x-3}-\dfrac{14}{3}\sqrt{x-3}-7\sqrt{x^2-9}+6\sqrt{x^2-9}=0\)
\(\Rightarrow\dfrac{1}{3}\sqrt{x-3}-\sqrt{\left(x-3\right)\left(x+3\right)}=0\Rightarrow\sqrt{x-3}-3\sqrt{\left(x-3\right)\left(x+3\right)}=0\)
\(\Rightarrow\sqrt{x-3}\left(1-3\sqrt{x+3}\right)=0\Rightarrow\left[{}\begin{matrix}\sqrt{x-3}=0\\1=3\sqrt{x+3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{26}{9}\left(l\right)\end{matrix}\right.\)
M.n ơi giúp e giải hộ câu này vs ạ !!
a) ( 3x-3 ).(5-21x)+ (7x+4).(9x-5) = 44
b) ( x+1).(x+2).(x+5)-x* . ( x+8) = 27
P/s : x* ( x bình phương hay x mũ 2 )
M.n giúp e sớm nha , mai e nộp bài r .
THANKS VERY MUCH =))
a) \(\Leftrightarrow\left(-63x^2+78x-15\right)+\left(63x^3+x-20\right)=44\)
\(\Leftrightarrow-63x^2+78x-15+63x^2+x-20=44\)
\(\Leftrightarrow79x-35=44\)
\(\Leftrightarrow79x=44+35\)
\(\Leftrightarrow79x=79\)
\(\Leftrightarrow x=1\)
b) \(\Leftrightarrow\left(x^2+3x+2\right).\left(x+5\right)-x^2.\left(x+8\right)=27\)
\(\Leftrightarrow x.\left(x^2+3x+2\right)+5.\left(x^2+3x+2\right)-x^3-8x^2=27\)
\(\Leftrightarrow x^3+3x^2+2x+5x^2+15x+10-x^3-8x^2=27\)
\(\Leftrightarrow17x+10=27\)
\(\Leftrightarrow17x=17\)
\(\Leftrightarrow x=1\)