Chứng minh
8(a+b+c)^3-(a+b)^3-(b+c)^3-(c+a)^3=3(c+b+2a)(c+2b+a)(2c+b+a)
Cho a,b,c lớn hơn 0. Chứng minh \(\dfrac{a^3}{\left(a+2b\right)\left(b+2c\right)}\)+\(\dfrac{b^3}{\left(b+2c\right)\left(c+2a\right)}\)+\(\dfrac{c^3}{\left(c+2a\right)\left(a+2b\right)}\)≥\(\dfrac{a+b+c}{9}\)
\(\dfrac{a^3}{\left(a+2b\right)\left(b+2c\right)}+\dfrac{a+2b}{27}+\dfrac{b+2c}{27}\ge3\sqrt[3]{\dfrac{a^3\left(a+2b\right)\left(b+2c\right)}{27^2.\left(a+2b\right)\left(b+2c\right)}}=\dfrac{a}{3}\)
Tương tự:
\(\dfrac{b^3}{\left(b+2c\right)\left(c+2a\right)}+\dfrac{b+2c}{27}+\dfrac{c+2a}{27}\ge\dfrac{b}{3}\)
\(\dfrac{c^3}{\left(c+2a\right)\left(a+2b\right)}+\dfrac{c+2a}{27}+\dfrac{a+2b}{27}\ge\dfrac{c}{3}\)
Cộng vế:
\(VT+\dfrac{2\left(a+b+c\right)}{9}\ge\dfrac{a+b+c}{3}\)
\(\Rightarrow VT\ge\dfrac{a+b+c}{9}\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c\)
1) cho a;b;c ko âm .chứng minh \(\sqrt{\frac{a+2b}{3}}+\sqrt{\frac{b+2c}{3}}+\sqrt{\frac{c+2a}{3}}\ge\sqrt{a}+\sqrt{b}+\sqrt{c}\)
2) cho a;;b;c dương và abc=1. chứng minh \(\frac{bc}{a^2b+a^2c}+\frac{ca}{b^2c+b^2a}+\frac{ab}{c^2a+c^2b}\ge\frac{3}{2}\)
Bài 1:
\(BDT\Leftrightarrow\sqrt{\frac{3}{a+2b}}+\sqrt{\frac{3}{b+2c}}+\sqrt{\frac{3}{c+2a}}\le\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\)
\(\Leftrightarrow\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\ge\sqrt{3}\left(\frac{1}{\sqrt{a+2b}}+\frac{1}{\sqrt{b+2c}}+\frac{1}{\sqrt{c+2a}}\right)\)
Áp dụng BĐT Cauchy-Schwarz và BĐT AM-GM ta có:
\(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{b}}\ge\frac{9}{\sqrt{a}+\sqrt{2}\cdot\sqrt{2b}}\ge\frac{9}{\sqrt{\left(1+2\right)\left(a+2b\right)}}=\frac{3\sqrt{3}}{\sqrt{a+2b}}\)
Tương tự cho 2 BĐT còn lại ta cũng có:
\(\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}+\frac{1}{\sqrt{c}}\ge\frac{3\sqrt{3}}{\sqrt{b+2c}};\frac{1}{\sqrt{c}}+\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{a}}\ge\frac{3\sqrt{3}}{\sqrt{c+2a}}\)
Cộng theo vế 3 BĐT trên ta có:
\(3\left(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\right)\ge3\sqrt{3}\left(\frac{1}{\sqrt{a+2b}}+\frac{1}{\sqrt{b+2c}}+\frac{1}{\sqrt{c+2a}}\right)\)
\(\Leftrightarrow\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\ge\sqrt{3}\left(\frac{1}{\sqrt{a+2b}}+\frac{1}{\sqrt{b+2c}}+\frac{1}{\sqrt{c+2a}}\right)\)
Đẳng thức xảy ra khi \(a=b=c\)
Bài 2: làm mãi ko ra hình như đề sai, thử a=1/2;b=4;c=1/2
Bài 2/
\(\frac{bc}{a^2b+a^2c}+\frac{ca}{b^2c+b^2a}+\frac{ab}{c^2a+c^2b}\)
\(=\frac{b^2c^2}{a^2b^2c+a^2c^2b}+\frac{c^2a^2}{b^2c^2a+b^2a^2c}+\frac{a^2b^2}{c^2a^2b+c^2b^2a}\)
\(=\frac{b^2c^2}{ab+ac}+\frac{c^2a^2}{bc+ba}+\frac{a^2b^2}{ca+cb}\)
\(\ge\frac{\left(bc+ca+ab\right)^2}{2\left(ab+bc+ca\right)}=\frac{ab+bc+ca}{2}\)
\(\ge\frac{3\sqrt[3]{ab.bc.ca}}{2}=\frac{3}{2}\)
Dấu = xảy ra khi \(a=b=c=1\)
bạn alibaba dòng thứ nhất rồi sao ra được dòng thứ hai á bạn mình k hiểu
cho 0<a,b,c<1. chứng minh: \(2a^3+2b^3+2c^3< 3+a^2b+b^2c+c^2a\)
cho 0<a,b,c<1. chứng minh \(2a^3+2b^3+2c^3< 3+a^2b+b^2c+c^2a\)
cho 0<a,b,c<1. chứng minh \(2a^3+2b^3+2c^3< 3+a^2b+b^2c+c^2a\)
cho 0<a,b,c<1. chứng minh \(2a^3+2b^3+2c^3< 3+a^2b+b^2c+c^2a\)
Cho a,b,c >0 . Chứng minh rằng : \(\frac{a}{b+2c}+\frac{b}{c+2a}+\frac{c}{a+2b}+\frac{2a}{b+2a}+\frac{2b}{c+2b}+\frac{2c}{a+2c}\)≥3
cho 0<a,b,c<1.Chứng minh rằng:\(2a^3+2b^3+2c^3< 3+a^2b+b^2c+c^2a\)
Cho 0<a;b;c<1 chứng minh rằng:
\(2a^3+2b^3+2c^3< 3+a^2b+b^2c+c^2a\)
Do a,b<1 => a^3<a^2<a<1 ; b^3<b^2<b<1 ; ta có :
(1-a^2)(1-b) => 1+a^2b>a^2+b
=> 1+a^2b>a^3+b^3 hay a^3+b^3 <1+a^2b
Tương tự : b^3+c^3 < 1+b^2;c^3+a^3<1+c^2a
=> 2a^3+2b^3+2c^3<3+a^2b+b^2c+c^2a