Tìm GTNN:
\(A=3x^2+2y^2+4z^2+2xy+4yz+4xz-4x-2y+2020\)
Tìm giá trị nhỏ nhất của biểu thức sau: Q = 3x^2 + 2y^2 + 4z^2 + 2xy + 4yz + 4xz – 4x – 2y + 5
Tìm Min \(K=5x^2+2y^2+4z^2-16x-4y-2xy+4yz+30\)
K = 5x2 + 2y2 + 4z2 - 16x - 4y - 4xz + 4yz + 30 ( sửa -2xy thành -4xz nhá :)) )
= [ ( x2 - 2xy + y2 ) - 4xz + 4yz + 4z2 ] + ( 4x2 - 16x + 16 ) + ( y2 - 4y + 4 ) + 10
= [ ( x - y )2 - 2( x - y )2z + ( 2z )2 ] + ( 2x - 4 )2 + ( y - 2 )2 + 10
= ( x - y - 2z )2 + ( 2x - 4 )2 + ( y - 2 )2 + 10
\(\hept{\begin{cases}\left(x-y-2z\right)^2\ge0\forall x,y,z\\\left(2x-4\right)^2\ge0\forall x\\\left(y-2\right)^2\ge0\forall y\end{cases}}\Rightarrow\left(x-y-2z\right)^2+\left(2x-4\right)^2+\left(y-2\right)^2+10\ge10\forall x,y,z\)
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-y-2z=0\\2x-4=0\\y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=y=2\\z=0\end{cases}}\)
=> MinK = 10 <=> x = y = 2 ; z = 0
Sai thì bỏ qua nhé ;-;
à quên thêm -4xz :)) sr sr :v
Đề đúng là K = 5x2 + 2y2 + 4z2 - 16x - 4y - 2xy - 4xz + 4yz + 30
Thế nhé :)) sai chỗ nào thì bỏ qua dùm mình -..-
Tìm x,y,z biết: a) x^2+y^2-4x+4y+8=0 b) 5x^2-4xy+y^2=0 c) x^2+2y^2+z^2-2xy-2y-4z+5=0 d) 3x^2+3y^2+3xy-3x+3y+3=0 e) 2x^2+y^2+2z^2-2xy-2xz+2yz-2z-2z-2x+2=0
a) x2+y2-4x+4y+8=0
⇔ (x-2)2+(y+2)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-2\end{matrix}\right.\)
b)5x2-4xy+y2=0
⇔ x2+(2x-y)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\2x-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
c)x2+2y2+z2-2xy-2y-4z+5=0
⇔ (x-y)2+(y-1)2+(z-2)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-1=0\\z-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y=1\\z=2\end{matrix}\right.\)
b: Ta có: \(5x^2-4xy+y^2=0\)
\(\Leftrightarrow x^2-\dfrac{4}{5}xy+y^2=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{2}{5}y+\dfrac{4}{25}y^2+\dfrac{21}{25}y^2=0\)
\(\Leftrightarrow\left(x-\dfrac{2}{5}y\right)^2+\dfrac{21}{25}y^2=0\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
d)3x2+3y2+3xy-3x+3y+3=0
⇔ 6x2+6y2+6xy-6x+6y+6=0
⇔ 3(x+y)2+3(x-1)2+3(y+1)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\x-1=0\\y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)
giúp mình ạ: tìm GTNN của:
x^2+2y^2+2xy+2y+2020
\(x^2+2y^2+2xy+2y+2020\)
\(=\left(x^2+2xy+y^2\right)+\left(y^2+2y+1\right)+2019\)
\(=\left[\left(x+y\right)^2+\left(y+1\right)^2+2019\right]\ge2019\)
Vì \(\left\{{}\begin{matrix}\left(x+y\right)^2\ge0\forall x,y\\\left(y+1\right)^2\ge0\forall y\end{matrix}\right.\)
Dấu "=" \(\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=1\end{matrix}\right.\)
a) x^2+!x-3!=4xy-4y^2
b)x^2+5y^2+2xy+4x+5
c)x^2-2x+y^2+4yz+4z^2+6=0
d)y^2+2y+4-2^x+2+2=0
giup minh bai nay vs
a)-3x^4y+6x^3y-3x^2y
b)3x(x-2y)+6y(2y-x)
c)8x^2+4xy-2ax-ay
e)x^3-y^2-2yz-z^2
d)x^2-2xy+y^2-m^2+2m-n^2
g)a^2-10a+25-y^2-4yz-4z^2
ban nao lam dc minh tick
tìm GTNN của biểu thức
a)B= 2x^2-2xy+5y^2+5
b)C= 5x^2+5y^2+8xy+2y-2x+2020
c)D= 5x^2+y^2+z^2-4x-2xy-z-1
Tìm GTNN:
D= x^2 + 2y^2 - 2xy + 4x - 2y +15
E= 3x^2 + 14y^2 - 12xy + 6x - 8y + 10
Đưa một tỉ tao làm cho
tìm gtnn của biểu thức
a/ x^2 + 2y^2+2xy +4x + 6y +19
b/2x^2+y^2+2xy-2y-4
c/4x^2 +2xy-4x+4xy-3
a) \(A=x^2+2y^2+2xy+4x+6y+19\)
\(=\left[\left(x^2+2xy+y^2\right)+2.\left(x+y\right).2+4\right]+\left(y^2+2y+1\right)+14\)
\(=\left[\left(x+y\right)^2+2\left(x+y\right).2+2^2\right]+\left(y+1\right)^2+14\)
\(=\left(x+y+2\right)^2+\left(y+1\right)^2+14\ge14\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x+y+2=0\\y=-1\end{cases}}\Leftrightarrow x=y=-1\)
b)Đề có gì đó sai sai...
c) Tương tự câu b,em cũng thấy sai sai...HÓng cao nhân giải ạ!
b) \(P=2x^2+y^2+2xy-2y-4\)
\(\Leftrightarrow2P=4x^2+2y^2+4xy-4y-8\)
\(\Leftrightarrow2P=\left(4x^2+4xy+y^2\right)+\left(y^2-4y+4\right)-12\)
\(\Leftrightarrow2P=\left(2x+y\right)^2+\left(y-2\right)^2-12\ge-12\forall x;y\)
Có \(2P\ge-12\Leftrightarrow P\ge-6\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x+y=0\\y-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\y=2\end{cases}}}\)