cho a,b,c,d >0 . CMR :
\(1< \frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< 2\)
a, Cho a,b>0 , CMR: \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
b. Cho a,b,c,d > 0. CMR: \(\frac{a-d}{d+b}+\frac{d-b}{b+c}+\frac{b-c}{c+a}+\frac{c-a}{a+d}\ge0\)
a/ Biến đổi tương đương:
\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\Leftrightarrow a^2+2ab+b^2\ge4ab\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)
Vậy BĐT được chứng minh
b/ \(VT=\frac{a-d}{b+d}+1+\frac{d-b}{b+c}+1+\frac{b-c}{a+c}+1+\frac{c-a}{a+d}+1-4\)
\(VT=\frac{a+b}{b+d}+\frac{c+d}{b+c}+\frac{a+b}{a+c}+\frac{c+d}{a+d}-4\)
\(VT=\left(a+b\right)\left(\frac{1}{b+d}+\frac{1}{a+c}\right)+\left(c+d\right)\left(\frac{1}{b+c}+\frac{1}{a+d}\right)-4\)
\(\Rightarrow VT\ge\left(a+b\right).\frac{4}{b+d+a+c}+\left(c+d\right).\frac{4}{b+c+a+d}-4\)
\(\Rightarrow VT\ge\frac{4}{\left(a+b+c+d\right)}\left(a+b+c+d\right)-4=4-4=0\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=d\)
Cho a,b,c,d>0
CMR \(1< \frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< 2\)
Cho a,b,c,d>0. CMR nếu \(\frac{a}{b}< 1\) thì \(\frac{a}{b}< \frac{a+c}{b+c}\) (1). Áp dụng cm các bđt sau
a)\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)
b)\(1< \frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< 2\)
c)\(2< \frac{a+b}{a+b+c}+\frac{b+c}{b+c+d}+\frac{c+d}{c+d+a}+\frac{d+a}{d+a+b}< 3\)
Từ \(\frac{a}{b}< 1\Rightarrow a< b\)
\(\frac{a}{b}< \frac{a+c}{b+c}\Leftrightarrow a\left(b+c\right)< b\left(a+c\right)\)
\(\Leftrightarrow ab+ac< ab+bc\Leftrightarrow ac< bc\Leftrightarrow a< b\) (đúng với giả thiết)
a/ Ta có: \(\frac{a}{a+b}< \frac{a+c}{a+b+c}\) ; \(\frac{b}{b+c}< \frac{a+b}{a+b+c}\); \(\frac{c}{c+a}< \frac{b+c}{a+b+c}\)
Cộng vế với vế:
\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+c+a+b+b+c}{a+b+c}=2\)
b/ \(\frac{a}{a+b+c}>\frac{a}{a+b+c+d}\) ; \(\frac{b}{b+c+d}>\frac{b}{a+b+c+d}\)
\(\frac{c}{c+d+a}>\frac{c}{a+b+c+d}\) ; \(\frac{d}{d+a+b}>\frac{d}{a+b+c+d}\)
Cộng vế với vế:
\(\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}>\frac{a+b+c+d}{a+b+c+d}=1\)
Mặt khác:
\(\frac{a}{a+b+c}< \frac{a+d}{a+b+c+d}\) ; \(\frac{b}{b+c+d}< \frac{b+a}{b+c+d+a}\) ...
Bạn tự làm nốt
c/ Hoàn toàn tương tự:
\(\frac{a+b}{a+b+c}>\frac{a+b}{a+b+c+d}\) làm tương tự 3 cái còn lại
Cộng lại sẽ ra BĐT bên trái
Sau đó \(\frac{a+b}{a+b+c}< \frac{a+b+d}{a+b+c+d}\) làm tương tự với 3 cái còn lại rồi cộng lại ra BĐT bên phải
Bài 1 : Cho 4 số a , b ,c khác 0 thỏa mãn \(^2=ac;c^2=bd;b^3+c^3+d^3\ne0\)
CMR : \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)
Bài 2 : Cho a , b , c , d > 0 . CMR :
\(1< \frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< 2\)
Bài 1:
Chúc bạn học tốt!
Các bạn giúp mình nhé : Bạn Vũ Minh Tuấn , Nguyễn Việt Lâm , Nguyễn Văn Đạt , Băng Băng 2k6 và thầy Akai Haruma , Phynit và tất cả các bạn khác vào giúp mình với ạ !!!
Bài 2:
CM vế thứ nhất:
Với $a,b,c,d>0$:
\(\left\{\begin{matrix} \frac{a}{a+b+c}>\frac{a}{a+b+c+d}\\ \frac{b}{b+c+d}>\frac{b}{a+b+c+d}\\ \frac{c}{c+d+a}>\frac{c}{a+b+c+d}\\ \frac{d}{d+a+b}>\frac{d}{a+b+c+d}\end{matrix}\right.\Rightarrow \frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}>\frac{a+b+c+d}{a+b+c+d}=1\)
CM vế thứ 2:
Xét hiệu \(\frac{a}{a+b+c}-\frac{a+d}{a+b+c+d}=\frac{a(a+b+c+d)-(a+d)(a+b+c)}{(a+b+c)(a+b+c+d)}=\frac{-d(b+c)}{(a+b+c)(a+b+c+d)}< 0\) với mọi $a,b,c,d>0$
\(\Rightarrow \frac{a}{a+b+c}< \frac{a+d}{a+b+c+d}\)
Hoàn toàn tương tự:
\(\frac{b}{b+c+d}< \frac{b+a}{b+c+d+a}; \frac{c}{c+d+a}< \frac{c+b}{c+d+a+b}; \frac{d}{d+a+b}< \frac{d+c}{d+a+b+c}\)
Cộng theo vế:
\(\Rightarrow \frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< \frac{a+d+b+a+c+b+d+c}{a+b+c+d}=\frac{2(a+b+c+d)}{a+b+c+d}=2\)
Ta có đpcm.
Cho a,b,c,d<0
CMR
\(1< \frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< 2\)
Cho a; b; c; d > 0. CMR: \(1<\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{a+b+d}<2.\)
Bài 1: cho a,b,c,d > 0. CMR:
\(\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}\) ≥2
bài 1: cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\)
a) CMR: (a+2c)(b+d)=(a+c)(b+2d) \(\left(b,d\ne0\right)\)
b) CMR: (a+c)(b-d)=ab-cd
c) CMR: \(\frac{a}{a-b}=\frac{c}{c-d}\left(a,b,c,d>0;a\ne b,c\ne d\right)\)
bài 2: cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}CMR:\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{d}\)
a) cho a,b>0 CMR \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
b) cho a,b,c,d>0 CMR \(\frac{a-d}{d+b}+\frac{d-b}{b+c}+\frac{b-c}{c+a}+\frac{c-a}{a+d}\)
PLEASE !!! GIÚP MK VS MK CẦN RẤT GẤP LÀM ƠN!!!
a, Có : (a-b)^2 >= 0
<=> a^2+b^2-2ab >= 0
<=> a^2+b^2 >= 2ab
<=> a^2+b^2+2ab >= 4ab
<=> (a+b)^2 >= 4ab
Vì a,b > 0 nên ta chia 2 vế bđt cho (a+b).ab ta được :
a+b/ab >= 4/a+b
<=> 1/a+1/b >= 4/a+b
=> ĐPCM
Dấu "=" xảy ra <=> a=b>0
Tk mk nha
Biến đổi tương đương
<=> (a + b)/ab >/ 4/(a + b) , do a,b > 0 --> ab > 0 và a + b > 0, quy đồng 2 vế
<=> (a + b)2 >/ 4ab
<=> a2 + 2ab + b2 >/ 4ab
<=> a2 - 2ab + b2 >/ 0
<=> (a - b)2 >/ 0 luôn đúng a,b > 0
=>đpcm
Dấu " = " xảy ra ⇔ a = b