Cho a, b, c >0. Chứng minh:
a)\(\frac{1}{2a+3b+3c}\) +\(\frac{1}{2b+3c+3a}\) +\(\frac{1}{2c+3a+3b}\) \(\le\) \(\frac{1}{4}\) (\(\frac{1}{a+b}\) +\(\frac{1}{b+c}\) +\(\frac{1}{c+a}\) )
b)\(\frac{1}{a+2b+3c}\) +\(\frac{1}{b+2c+3a}\) +\(\frac{1}{c+2a+3b}\) \(\le\) \(\frac{1}{2}\) (\(\frac{1}{a+2c}\) +\(\frac{1}{b+2a}\) +\(\frac{1}{c+2b}\) )