Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Anh Phạm Phương
Xem chi tiết
Nguyễn Việt Lâm
29 tháng 9 2019 lúc 8:01

Biến đổi tương đương:

\(\Leftrightarrow4x^2+4y^2+4z^2\ge2x^2+2y^2+2z^2+2xy+2yz+2zx\)

\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2zx\ge0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\) (luôn đúng)

Dấu "=" xảy ra khi \(x=y=z\)

tthnew
29 tháng 9 2019 lúc 20:42

A no thơ quay nhưng lại không hay:P(Another way)

\(BĐT\Leftrightarrow x^2+y^2+z^2\ge xy+yz+zx\) (biến đổi tương đương thôi)

\(\Leftrightarrow\frac{3}{4}\left(x-y\right)^2+\frac{1}{4}\left(x+y-2z\right)^2\ge0\) (true)

Đẳng thức xảy ra khi x =y = z

P/s: cách này làm màu thôi :D

tthnew
30 tháng 9 2019 lúc 18:45

Thực ra mấy dạng bậc 2 kiểu này theo em thì dùng công thức \(at^2+bt+c=a\left(t+\frac{b}{2a}\right)^2+\frac{4ac-b^2}{4a}\) (bằng cách đưa về đa thức biến t)

Chi tiết như sau:(sai chỗ nào bl cho em biết cái nha:D)

BĐT \(\Leftrightarrow x^2+y^2+z^2\ge xy+yz+zx\)

\(\Leftrightarrow x^2-x\left(y+z\right)+y^2+z^2-yz\ge0\)

\(\Leftrightarrow\left(x-\frac{y+z}{2}\right)^2+\frac{4\left(y^2+z^2-yz\right)-\left(y+z\right)^2}{4}\ge0\)

\(\Leftrightarrow\frac{1}{4}\left(2x-y-z\right)^2+\frac{3}{4}\left(y-z\right)^2\ge0\)

Nguyễn Thị Mỹ Hạnh
Xem chi tiết
Tuấn Nguyễn
27 tháng 12 2015 lúc 20:19

Em học lớp 6 vào chtt nha tick cho em với

Ngô Duy Phúc
Xem chi tiết
Trần Hữu Ngọc Minh
14 tháng 12 2017 lúc 18:40

2)\(\frac{x+y}{xy}\ge\frac{4}{x+y}\Leftrightarrow\left(x+y\right)^2\ge4xy\)

theo yêu cầu của bạn thì đến đâ mk làm theo cách này

ÁP Dụng cô si ta có:\(x+y\ge2\sqrt{xy}\)\(\Rightarrow\left(x+y\right)^2\ge4xy\)(luôn đúng)\(\Rightarrowđpcm\)

cách 2

\(\left(x+y\right)^2\ge4xy\Leftrightarrow x^2+2xy+y^2\ge4xy\)

\(\Leftrightarrow x^2-2xy+y^2\ge0\Leftrightarrow\left(x-y\right)^2\ge0\)(luôn đúng)

\(\Rightarrowđpcm\)

Nguyễn Hằng Nga
Xem chi tiết
Lại Văn Định
29 tháng 8 2020 lúc 15:05

x2+y2z2>=2lxl.lyl.lzl nên VT>=6lxl.lyl.lzl>=6xyz

Nguyễn Hằng Nga
Xem chi tiết
hello7156
Xem chi tiết
Anh Phạm Phương
Xem chi tiết
Nguyễn Việt Lâm
30 tháng 9 2019 lúc 8:35

Biến đổi tương đương:

\(3x^2+3y^2+3z^2\ge x^2+y^2+z^2+2xy+2yz+2zx\)

\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2zx\ge0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\) (luôn đúng)

Dấu "=" xảy ra khi \(x=y=z\)

Đặng Khánh Duy
Xem chi tiết
Akai Haruma
23 tháng 9 2020 lúc 10:33

Lời giải:

Ta có:

$x^4+y^4+(x+y)^4=(x^4+y^4+2x^2y^2)-2x^2y^2+[(x+y)^2]^2$

$=(x^2+y^2)^2-2x^2y^2+(x^2+2xy+y^2)^2$
$=(x^2+y^2)^2-2x^2y^2+(x^2+y^2)^2+(2xy)^2+4xy(x^2+y^2)$

$=2(x^2+y^2)^2+2x^2y^2+4xy(x^2+y^2)$

$=2[(x^2+y^2)^2+2xy(x^2+y^2)+(xy)^2]$

$=2(x^2+y^2+xy)^2$

Ta có đpcm.

Khách vãng lai đã xóa
Ngan Le Hoang Hai
Xem chi tiết