Find the minimum value of A=x(x-3)
Find the minimum value of the expression .
Answer: The minimum value is
Bài này không khó cách làm thế này:
x2+y2+2x+2y+2xy+5 = (x2 + y2 +1 +2x + 2y+ 2xy)+4
= (x + y +1 )2 +4
Ta có ( x + y +1)2 >= 0 \(\Rightarrow\) ( x +y +1)2 +4 >= 4
Dấu "=" xảy ra khi và chỉ khi x=y=-0,5
Vậy Min(x+y+1)2 = 4 khi và chỉ khi x=y=-0,5.
Xong rồi đó. Có gì sai sót các bạn góp ý nhé.
x2 + y2 + 2x + 2y + 2xy + 5
= x2 + y2 + 12 + 2x + 2y + 2xy + 4
= (x + y + 1)2 + 4 \(\ge\) 4
Ta có : \(A=x^2+y^2+2x+2y+2xy+5=x^2+y^2+1^2+2xy+2.y.1+2.x.1+5-1\)
\(=\left(x+y+1\right)^2+4\ge4\)
Vậy Amin = 4
For positive real numbers x,y,z so that: x+y+z = 3. Find the minimum value of expression
A = 1/( x^2 + x) + 1/(y^2+ y) +1/( z^2 +z)
Assume that two numbers x and y satisfy: 2x + y = 6.
Find the minimum value of expression A = 4x2 + y2
\(2x+y=6\)
\(\Rightarrow y=6-2x\)
\(\text{Thế vào phương trình ta dc:}\)
\(4x^2+\left(6-2x\right)^2\)
\(=4x^2+36-24x+4x^2\)
\(=8x^2-24x+36\)
\(\Leftrightarrow4x\left(2x-6\right)+36\)
Rồi sao nữa quên ùi
ta có : \(2x+y=6\Leftrightarrow y=6-2y\)
thay vào A, ta có:
\(A=4x^2+\left(6-2x\right)^2\)
\(A=8\left(x^2-3x+2,25\right)+18\)
\(A=8\left(x-1,5\right)^2+18\)
\(\Rightarrow A\ge18\)
Find the minimum value of the expression .
A=(x+y+1)(x+y+1)+4
A=(x+y+1)2+4
Vậy MinA=4 khi.......... của @Nguyễn Huy Thắng đó mà ghi tiếp
ngu Anh nhưng ko sao dịch dc chữ Find the minimum = tìm GTNN :)
\(A=x^2+y^2+2x+2y+2xy+5\)
\(=\left(x^2+y^2+2x+2y+2xy+1\right)+4\)
\(=\left(x+y+1\right)^2+4\ge4\)
Dấu "=" xảy ra khi \(\left(x+y+1\right)^2=0\)\(\Rightarrow x=-y-1\)
Vậy \(Min_A=4\) khi \(x=-y-1\)
Find the minimum value of A = \(\sqrt{3x-6}-21+\sqrt{x-2}\)
Find the minimum value of \(S=\left|x+1\right|+\left|x+5\right|+\left|x+14\right|+\left|x+97\right|+\left|x+1920\right|\) ?
Find the maximum and minimum value of the expression
\(\frac{x+y+z}{3}+\frac{2016}{\sqrt[3]{xyz}}\)if \(x,y,z\in\left[1,2016\right]\)
Đặt \(A=\frac{x+y+z}{3}+\frac{2016}{\sqrt[3]{xyz}}\)
Tìm giá trị nhỏ nhất :Áp dụng bđt Cauchy : \(A=\frac{x+y+z}{3}+\frac{2016}{\sqrt[3]{xyz}}\ge\frac{3.\sqrt[3]{xyz}}{3}+\frac{2016}{\sqrt[3]{xyz}}\)
\(\Rightarrow A\ge\sqrt[3]{xyz}+\frac{2016}{\sqrt[3]{xyz}}\ge2\sqrt{\sqrt[3]{xyz}.\frac{2016}{\sqrt[3]{xyz}}}\)
\(\Rightarrow A\ge2\sqrt{2016}=24\sqrt{14}\) .
Dấu "=" xảy ra khi và chỉ khi \(\begin{cases}x=y=z\\\sqrt[3]{xyz}=\frac{2016}{\sqrt[3]{xyz}}\end{cases}\) \(\Leftrightarrow x=y=z=12\sqrt{14}\)
Vậy A đạt giá trị nhỏ nhất bằng \(24\sqrt{14}\) tại \(x=y=z=12\sqrt{14}\)
Find the minimum value of A = 2a(3a-1) - 3a(a+5)+ 2a +3
Có ny chưa ? Lm wen ik <3
Girl 2k5 :3
https://olm.vn/thanhvien/duy1234lc12 làm quen với ổng ý
....
....
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web
find the minimum value ò B = (-x-2)4 + 5(x+2)2
B = (-x-2)4 + 5( x+2)2 = ( x+2)4 +5(x+2)2 >/ 0
=> Min B = 0 <=> x+2 =0 => x =-2
Tìm giá trị nhỏ nhất của B = (-x-2)4 + 5(x+2)2
+Vì (x+2)^2 > hoặc = 0 => (x+2)2 min =0
=>5(x+2)2 min =0
+Vì (-x-2)4 > hoặc = 0 => (-x-2)4min= 0
=> B min =0 <=> x= -2