\(x^{2019}=\sqrt{y\left(y+1\right)\left(y+2\right)\left(y+3\right)}+1\)
x2019=\(\sqrt{y\left(y+1\right)\left(y+2\right)\left(y+3\right)}+1\)
cho x,y ,z là các số dương thỏa mãn:xy+yz+zx=2019
Tính gtrị bt\(P=x\sqrt{\frac{\left(y^2+2019\right).\left(z^2+2019\right)}{x^2+2019}}+y\sqrt{\frac{\left(z^2+2019\right).\left(x^2+2019\right)}{y^{2^{ }}+2019}}+z\sqrt{\frac{\left(x^2+2019\right).\left(y^2+2019\right)}{z^2+2019}}\)
Có \(y^2+2019=y^2+xy+yz+zx=y\left(x+y\right)+z\left(x+y\right)=\left(y+z\right)\left(x+y\right)\)
\(x^2+2019=x^2+xy+yz+zx=x\left(x+y\right)+z\left(x+y\right)=\left(x+z\right)\left(x+y\right)\)
\(z^2+2019=z^2+xy+yz+xz=z\left(z+y\right)+x\left(y+z\right)=\left(z+x\right)\left(y+z\right)\)
Có \(P=x\sqrt{\frac{\left(y^2+2019\right)\left(z^2+2019\right)}{x^2+2019}}+y\sqrt{\frac{\left(z^2+2019\right)\left(x^2+2019\right)}{y^2+2019}}+z\sqrt{\frac{\left(x^2+2019\right)\left(y^2+2019\right)}{z^2+2019}}\)
=\(x\sqrt{\frac{\left(y+z\right)\left(x+y\right)\left(x+z\right)\left(z+y\right)}{\left(x+z\right)\left(y+x\right)}}+y\sqrt{\frac{\left(z+x\right)\left(y+z\right)\left(x+z\right)\left(x+y\right)}{\left(y+z\right)\left(x+y\right)}}+z\sqrt{\frac{\left(x+z\right)\left(x+y\right)\left(y+z\right)\left(x+y\right)}{\left(z+x\right)\left(y+z\right)}}\)
=\(x\sqrt{\left(y+z\right)^2}+y\sqrt{\left(x+z\right)^2}+z\sqrt{\left(x+y\right)^2}\)
=\(x\left|y+z\right|+y\left|x+z\right|+z\left|x+y\right|\)
=\(x\left(y+z\right)+y\left(x+z\right)+z\left(x+y\right)\) (vì x,y,z >0)
= xy+xz+xy+yz+xz+yz
=2(xy+xz+yz)=2.2019(vì xy+xz+yz=2019)
=4038
Vậy P=4038
cho \(\left(x+\sqrt{x^2+2019}\right)\left(y+\sqrt{y^2+2019}\right)=2019\). CM: \(x^{2019}+y^{2019}=0\)
Từ gt suy ra: \(x+\sqrt{x^2+2019}=\dfrac{2019}{y+\sqrt{y^2+2019}}=\sqrt{y^2+2019}-y\).
Tương tự: \(y+\sqrt{y^2+2019}=\sqrt{x^2+2019}-x\).
Do đó dễ dàng suy ra được: \(x+y=0\).
\(\Rightarrow x=-y\Rightarrow x^{2019}+y^{2019}=x^{2019}+\left(-x\right)^{2019}=0\left(đpcm\right)\).
ai giúp t với
1:\(\left\{\begin{matrix}x\sqrt{12-y}+\sqrt{y\left(12-x^2\right)}=12\\x^3-8x-1=2\sqrt{y-2}\end{matrix}\right.\)
2:\(\left\{\begin{matrix}\left(1-y\right)\sqrt{x-y}+x=2+\left(x-y-1\right)\sqrt{y}\\2y^2-3x+6y+1=2\sqrt{x-2y}-\sqrt{4x-5y-3}\end{matrix}\right.\)
3:\(\left\{\begin{matrix}y\left(x^2+2x+2\right)=x\left(y^2+6\right)\\\left(y-1\right)\left(x^2+2x+7\right)=\left(x+1\right)\left(y^2+1\right)\end{matrix}\right.\)
4:\(\left\{\begin{matrix}x-2\sqrt{y+1}=3\\x^3-4x^2\sqrt{y+1}-9x-8y=-52-4xy\end{matrix}\right.\)
5:\(\left\{\begin{matrix}\frac{y-2x+\sqrt{y}-x}{\sqrt{xy}}+1=0\\\sqrt{1-xy}+x^2-y^2=0\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\sqrt{x+2}\left(x+3\right)=\sqrt{y}\left[\sqrt{y\left(x+2\right)}+1\right]\\x^2+\left(y+1\right)\left(2x-y+5\right)=x+16\end{matrix}\right.\)
ĐKXĐ: \(x\ge-2;y\ge0\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x+2}=a\ge0\\\sqrt{y}=b\ge0\end{matrix}\right.\) pt đầu trở thành:
\(a\left(a^2+1\right)=b\left(ab+1\right)\)
\(\Leftrightarrow a^3+a=ab^2+b\)
\(\Leftrightarrow a^3-ab^2+a-b=0\)
\(\Leftrightarrow a\left(a^2-b^2\right)+a-b=0\)
\(\Leftrightarrow a\left(a-b\right)\left(a+b\right)+a-b=0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+1\right)=0\)
\(\Leftrightarrow a-b=0\) (do \(a^2+ab+1>0;\forall a\ge0;b\ge0\))
\(\Leftrightarrow\sqrt{x+2}=\sqrt{y}\)
\(\Rightarrow y=x+2\)
Thế vào pt dưới:
\(x^2+\left(x+3\right)\left(x+3\right)=x+16\)
\(\Leftrightarrow2x^2+5x-7=0\Rightarrow\left[{}\begin{matrix}x=1\Rightarrow y=3\\x=-\dfrac{7}{2}< -2\left(loại\right)\end{matrix}\right.\)
Ghpt:
a) \(\left\{{}\begin{matrix}\left(4x^2+1\right).x+\left(y-3\right)\sqrt{5-2y}=0\\4x^2+y^2+2\sqrt{3-4x}=7\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}x^2+y^2=5\\\sqrt{y-1}\left(x+y-1\right)=\left(y-2\right)\sqrt{x+y}\end{matrix}\right.\)
Giải hệ pt
1/\(\left\{{}\begin{matrix}4x\sqrt{y+1}+8x=\left(4x^2-4x-3\right)\sqrt{x+1}\\\dfrac{x}{x+1}+x^2=\left(y+2\right)\sqrt{\left(x+1\right)\left(y+1\right)}\end{matrix}\right.\)
2/\(\left\{{}\begin{matrix}x\sqrt{y^2+6}+y\sqrt{x^2+3}=7xy\\x\sqrt{x^2+3}+y\sqrt{y^2+6}=x^2+y^2+2\end{matrix}\right.\)\(\left\{{}\begin{matrix}x\sqrt{y^2+6}+y\sqrt{x^2+3}=7xy\\x\sqrt{x^2+3}+y\sqrt{y^2+6}=x^2+y^2+2\end{matrix}\right.\)
3/\(\left\{{}\begin{matrix}\left(2x+y-1\right)\left(\sqrt{x+3}+\sqrt{xy}+\sqrt{x}\right)=8\sqrt{x}\\\left(\sqrt{x+3}+\sqrt{xy}\right)^2+xy=2x\left(6-x\right)\end{matrix}\right.\)\(\left\{{}\begin{matrix}\left(2x+y-1\right)\left(\sqrt{x+3}+\sqrt{xy}+\sqrt{x}\right)=8\sqrt{x}\\\left(\sqrt{x+3}+\sqrt{xy}\right)^2+xy=2x\left(6-x\right)\end{matrix}\right.\)
4/\(\left\{{}\begin{matrix}\sqrt{xy+x+2}+\sqrt{x^2+x}-4\sqrt{x}=0\\xy+x^2+2=x\left(\sqrt{xy+2}+3\right)\end{matrix}\right.\)\(\left\{{}\begin{matrix}\sqrt{xy+x+2}+\sqrt{x^2+x}-4\sqrt{x}=0\\xy+x^2+2=x\left(\sqrt{xy+2}+3\right)\end{matrix}\right.\)
m.n giúp e mấy bài này vs ạ!!
Cho \(\left(x+\sqrt{x^2+1}\right)\left(y+\sqrt{y^2+1}\right)=1\)tính \(A=x^{2019}+y^{2019}\)
Ta xét \(\left(x+\sqrt{x^2+1}\right)\left(x-\sqrt{x^2+1}\right)=x^2-\left(x^2+1\right)=-1.\)
Mà \(\left(x+\sqrt{x^2+1}\right)\left(y+\sqrt{y^2+1}\right)=1\)
\(\Rightarrow x-\sqrt{x^2+1}=-\left(y+\sqrt{y^2+1}\right)\)
\(\Leftrightarrow x+y=\sqrt{x^2+1}-\sqrt{y^2+1}.\)(1)
Xét \(\left(y+\sqrt{y^2+1}\right)\left(y-\sqrt{y^2+1}\right)=y^2-\left(y^2+1\right)=-1\)
Mà \(\left(x+\sqrt{x^2+1}\right)\left(y+\sqrt{y^2+1}\right)=1\)
\(\Rightarrow y-\sqrt{y^2+1}=-\left(x+\sqrt{x^2+1}\right).\)
\(\Leftrightarrow x+y=\sqrt{y^2+1}-\sqrt{x^2+1}\)(2)
Cộng 2 vế của (1) và (2) Ta được
\(2\left(x+y\right)=0\Leftrightarrow x=-y\)Thế vào A
\(A=x^{2019}+y^{2019}=\left(-y\right)^{2019}+y^{2019}=0\)
\(\text{Tính }A=x^2\left(x+1\right)-y^2\left(y-1\right)+xy-3xy\left(x-y+1\right)+2019\) \(\text{biết }x-y=\sqrt{12\sqrt{5}+29}\)
\(x-y=\sqrt{29+12\sqrt{5}}=2\sqrt{5}+3\)
\(A=x^3-y^3+x^2+y^2+xy-3xy\left(x-y+1\right)+2019\)
\(=\left(x-y\right)\left(x^2+y^2+xy\right)+x^2+y^2+xy-3xy\left(x-y+1\right)+2019\)
\(=\left(x-y+1\right)\left(x^2+y^2+xy\right)-3xy\left(x-y+1\right)+2019\)
\(=\left(x-y+1\right)\left(x^2+y^2-2xy\right)+2019\)
\(=\left(x-y+1\right)\left(x-y\right)^2+2019\)
\(=\left(4+2\sqrt{5}\right)\left(3+2\sqrt{5}\right)^2+2019\)
\(=2255+106\sqrt{5}\)