\(x-y=\sqrt{29+12\sqrt{5}}=2\sqrt{5}+3\)
\(A=x^3-y^3+x^2+y^2+xy-3xy\left(x-y+1\right)+2019\)
\(=\left(x-y\right)\left(x^2+y^2+xy\right)+x^2+y^2+xy-3xy\left(x-y+1\right)+2019\)
\(=\left(x-y+1\right)\left(x^2+y^2+xy\right)-3xy\left(x-y+1\right)+2019\)
\(=\left(x-y+1\right)\left(x^2+y^2-2xy\right)+2019\)
\(=\left(x-y+1\right)\left(x-y\right)^2+2019\)
\(=\left(4+2\sqrt{5}\right)\left(3+2\sqrt{5}\right)^2+2019\)
\(=2255+106\sqrt{5}\)