\(E^2=x^2\left(y^2+1\right)+y^2\left(x^2+1\right)+2xy\sqrt{\left(y^2+1\right)\left(x^2+1\right)}\)
\(=2\left(xy\right)^2+x^2+y^2+2xy\sqrt{\left(x^2+1\right)\left(y^2+1\right)}\)
\(a^2=\left(xy\right)^2+2xy\sqrt{\left(x^2+1\right)\left(y^2+1\right)}+\left(x^2+1\right)\left(y^2+1\right)\)
\(=2\left(xy\right)^2+2xy\sqrt{\left(x^2+1\right)\left(y^2+1\right)}+x^2+y^2+1\)
\(\Rightarrow E^2=a^2-1\Rightarrow E=\sqrt{a^2-1}\)
\(E=x\sqrt{1+y^2}+y\sqrt{1+x^2}\)
\(\Leftrightarrow E^2=x^2\left(1+y^2\right)+y^2\left(1+x^2\right)+2xy\sqrt{\left(1+y^2\right)\left(1+x^2\right)}\)
\(=2x^2y^2+x^2+y^2+2xy\left(a-xy\right)\)
\(=2x^2y^2+x^2+y^2+2xya-2x^2y^2\)
\(=x^2+y^2+2xya\)
\(=\left(2xy\right)2+a=a^2+a=E^2\)
\(E=\sqrt{a^2+a}\)
\(\rightarrow E^2=x^2\left(1+y^2\right)+y^2\left(1+x^2\right)+\\ 2xy\sqrt{\left(1+y^2\right)\left(1+x^2\right)}\\ =2xy^2+x^2+y^2+2xy\left(a-xy\right)\\ =2x^2y^2+x^2+y^2+2xya-2x^2y^2\\ =x^2+y^2+2xya\\ =\left(x+y\right)^2+a=a^2+a\\ =E^2\\ Vậy.E=\sqrt{a^2+a}\)