Lời giải:
Áp dụng HĐT $(a-b)^3=a^3-b^3-3ab(a-b)$ ta có:
\(x^3=2+\sqrt{3}-(2-\sqrt{3})-3\sqrt[3]{(2+\sqrt{3})(2-\sqrt{3})}.x\)
\(\Leftrightarrow x^3=2\sqrt{3}-3x\)
\(y^3=\sqrt{5}+2-(\sqrt{5}-2)-3\sqrt[3]{(\sqrt{5}-2)(\sqrt{5}+2)}.y\)
\(\Leftrightarrow y^3=4-3y\)
Khi đó:
\(A=(x-y)^3+3(x-y)(xy+1)=x^3-y^3-3xy(x-y)+3(x-y)xy+3(x-y)\)
\(=x^3-y^3+3x-3y=2\sqrt{3}-3x-(4-3y)+3x-3y\)
\(=2\sqrt{3}-4\)
Lời giải:
Áp dụng HĐT $(a-b)^3=a^3-b^3-3ab(a-b)$ ta có:
\(x^3=2+\sqrt{3}-(2-\sqrt{3})-3\sqrt[3]{(2+\sqrt{3})(2-\sqrt{3})}.x\)
\(\Leftrightarrow x^3=2\sqrt{3}-3x\)
\(y^3=\sqrt{5}+2-(\sqrt{5}-2)-3\sqrt[3]{(\sqrt{5}-2)(\sqrt{5}+2)}.y\)
\(\Leftrightarrow y^3=4-3y\)
Khi đó:
\(A=(x-y)^3+3(x-y)(xy+1)=x^3-y^3-3xy(x-y)+3(x-y)xy+3(x-y)\)
\(=x^3-y^3+3x-3y=2\sqrt{3}-3x-(4-3y)+3x-3y\)
\(=2\sqrt{3}-4\)