Tìm nghiệm nguyên:
\(xy-2y-3=3x-x^2\)
Tìm giá trị của phương trình nghiệm nguyên \(xy-2y-3=3x-x^2\)
Tìm nghiệm nguyên của phương trình x2y+2y+5=3x+xy
Tìm nghiệm nguyên của phương trình:
6x 3 –xy(11x+3y) +2y 3 =6
(x-2y)(2x+y)(3x- y) =6
bn ơi bn lm đc bài này ko giúp mik vs
tìm x;y trong phương trình nghiệm nguyên sau:
a)x^2+y^2-2.(3x-5y)=11 b)x^2+4y^2=21+6x
tìm nghiệm nguyên của pt : \(x^3-xy-3x+2y+1=0\)
Tìm nghiệm nguyên của phương trình x2y+2y+5=3x+xy
Giúp mk nhanh với
tìm phương trình nghiệm nguyên: x2 - 3x + 9 = -xy +2y
Lời giải:
$x^2-3x+9=-xy+2y$
$\Leftrightarrow x^2+x(y-3)+(9-2y)=0$
Coi đây là pt bậc 2 ẩn $x$. PT có nghiệm nguyên khi:
$\Delta=(y-3)^2-4(9-2y)=m^2$ với $m$ là stn.
$\Leftrightarrow y^2+2y-27=m^2$
$\Leftrightarrow (y+1)^2-28=m^2$
$\Leftrightarrow 28=(y+1)^2-m^2=(y+1-m)(y+1+m)$
Do $y+1-m, y+1+m$ là các số nguyên và có cùng tính chẵn lẻ, $y+1-m\leq y+1+m$ với $m$ tự nhiên nên:
TH1: $y+1-m=2; y+1+m=14$
$\Rightarrow y=7$. Thay vào pt và giải tìm x thôi.
TH2: $y+1-m=-14; y+1+m=-2$
$\Rightarrow y=-9$. Đến đây thay vào pt ban đầu và giải tìm $x$.
Tìm nghiệm nguyên của pt 2y² - x = 2y - xy + 3
\(2y^2-x=2y-xy+3\)
\(\Leftrightarrow\left(y-1\right)\left(2y+x\right)=3\)
2y^2-x=2y-xy+3
<=>2y^2-2y-x+xy=3
<=>2y(y-1)+x(y-1)=3
<=>(y-1)(2y+x)=3
=>y-1;2y+x thuộc ước của 3
tới đây bạn xét 4 TH là được nha
Chúc học tốt!
Tìm tất cả các nghiệm nguyên dương của phương trình \(x^2+x+2y^2+y=2xy^2+xy+3\)
\(pt\Leftrightarrow x^2-x+2x-2+2y^2-2xy^2+y-xy=1\\ \Leftrightarrow\left(1-x\right)\left(2y^2+y-x-2\right)=1\)
e tự xét 2 th ra
Tìm các số nguyên x, y biết:
a) ( x -3 ) ( y + 2 ) = 7
b) xy - 2y + 3x - 6 = 3.
\(a.\left(x-3\right)\cdot\left(y+2\right)=7\)Ư(7) = {1;-1;7;-7}
\(=>x-3\inƯ\left(7\right);y+2\inƯ\left(7\right)\)
Th1 : x - 3 = 1 ; y + 2 = 7
x-3 =1
=> x =4
y + 2 =7
=> y=5
Th2 : x - 3 = 7 ; y + 2 = 1
x-3 = 7
=> x = 10
y + 2 =1
=> y = -1
Th3 : x - 3 = -1 ; y + 2 = -7
x - 3 = -1
=> x = 2
y + 2 = -7
=> y= -9
Th4 : x - 3 = -7 ; y + 2 = -1
x - 3 = -7
=> x = -4
y+2 =-1
=> y=-3
Vậy {(y=-3 ; x=-4), (y=-9;x=2);(y=-1;x=10); ( y=5 ; x =4 )}
b. xy -2y + 3x-6 = 3
y(x-2) + 3(x-2)= 3
(x-2) . (y + 3) = 3
x-2 ϵ Ư(3); y+3 ϵ Ư(3)
Ư(3) = {-1;1;-3;3)
Th1 : x -2 = -1 ; y+3 = -3
x-2 =-1 y+3=-3
=> x=1 => y=-6
Th2 : x -2 = -3 ; y+3 = -1
x-2=-3 y+3=-1
=> x= -1 => y =-4
Th3 : x -2 = 1; y+3 = 3
x-2 = 1 y+3=3
=> x=3 => y = 0
Th4 : x -2 = 3; y+3 = 1
x- 2 = 3 y +3 = 1
=> x = 5 => y = -2
Vậy {(y=-6 ; x=1), (y=-4;x=-1);(y=0;x=3); ( y=-2 ; x =5 )}
a, (\(x\) - 3)(\(y\) + 2) = 7
Ư(7) = { -7; -1; 1; 7}
Lập bảng ta có:
\(x-3\) | -7 | -1 | 1 | 7 |
\(x\) | -4 | 2 | 4 | 10 |
\(y\) + 2 | -1 | -7 | 7 | 1 |
\(y\) | -3 | -9 | 5 | -1 |
Theo bảng trên ta có:
Các cặp giá trị \(x;y\) nguyên thỏa mãn đề bài lần lượt là:
(\(x;y\)) = (-4; -3); (2; -9); (4; 5); (10; -1)
b, \(xy\) - 2\(y\) + 3\(x\) - 6 = 3
(\(xy\) + 3\(x\)) = 3 + 2\(y\) + 6
\(x\left(y+3\right)\) = 9 + 2\(y\)
\(x\) = (9 + 2\(y\)) : (\(y\) + 3)
\(x\) \(\in\) Z ⇔ 9 + 2\(y\)⋮\(y+3\) ⇒ 2\(y\) + 6 + 3 ⋮ \(y\)\(+3\)⇒2(\(y\)+3) + 3⋮\(y\)+ 3
⇒ 3 ⋮ \(y\) + 3
Ư(3) = (-3; -1; 1; 3}
Lập bảng ta có:
\(y\) + 3 | -3 | -1 | 1 | 3 |
\(y\) | -6 | -4 | -2 | 0 |
\(x\) = (9 + 2\(y\)): (\(y\)+3) | 1 | -1 | 5 | 3 |
(\(x;y\)) | (1;-6) | (-1; -4) | (5;-2) | (3;0) |
Theo bảng trên ta có các cặp \(x;y\) nguyên thỏa mãn đề bài lần lượt là:
(1; -6); (-1; -4); (5; -2) ;(3; 0)