\(\frac{1}{2}\)*\(\sqrt{144}\)+\(\sqrt{\frac{1}{9}}\)
Áp dụng quy tắc khai phương một phương, hãy tính :
\(\sqrt{\frac{9}{169}}\) ; \(\sqrt{\frac{25}{144}}\) ; \(\sqrt{1\frac{9}{16}}\) ; \(\sqrt{2\frac{7}{81}}\)
S=1+\(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{144}}\)
chứng tỏ 22<S<33
Với mọi số tự nhiên a> 1 ta có:
\(\frac{1}{\sqrt{a}}=\frac{2}{2\sqrt{a}}>\frac{2}{\sqrt{a}+\sqrt{a+1}}=2\left(\sqrt{a+1}-\sqrt{a}\right)=2\sqrt{a+1}-2\sqrt{a}\)
\(\frac{1}{\sqrt{a}}=\frac{2}{2\sqrt{a}}< \frac{2}{\sqrt{a}+\sqrt{a-1}}=2\left(\sqrt{a}-\sqrt{a-1}\right)=2\sqrt{a}-2\sqrt{a-1}\)
Áp dụng vào bài tập trên ta có:
\(S=1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{144}}\)
\(>2\sqrt{2}-2\sqrt{1}+2\sqrt{3}-2\sqrt{2}+2\sqrt{4}-2\sqrt{3}+...+2\sqrt{145}-2\sqrt{144}\)
\(=-2\sqrt{1}+2\sqrt{145}>2\left(\sqrt{145}-1\right)>2\left(\sqrt{144}-1\right)=22\)
=> S>22
\(S=1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{144}}\)
\(< 1+2\sqrt{2}-2\sqrt{1}+2\sqrt{3}-2\sqrt{2}+...+2\sqrt{144}-2\sqrt{143}\)
\(=1-2\sqrt{1}+2\sqrt{144}=23\)
=> S<23
Vậy 22<S<23
chho M=\(\sqrt{1}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{144}}\) ko là số tự nhiên
Thực hiện phép tính sau
a. F=[12(1)-2,3(6)]:4,(21)
b.\(\frac{1\frac{11}{34}.4\frac{3}{7}-\left(\frac{3}{2}-6\frac{1}{3}.\frac{2}{19}\right)}{4\frac{5}{6}+\frac{1}{6}.\left(12-5\frac{1}{3}\right)}\)
c.1-\(\frac{\sqrt{121}}{\sqrt{196}}-\frac{\sqrt{169}}{\sqrt{144}}+\frac{\sqrt{25}}{\sqrt{36}}+\left(-1\frac{2}{3}\right):\left(-3\frac{1}{3}\right)\)
c/
\(=1-\frac{11}{14}-\frac{14}{12}+\frac{5}{6}+\frac{-5}{3}:\frac{-10}{3}\)
\(=1-\frac{11}{14}-\frac{14}{12}+\frac{5}{6}+\frac{-5}{3}.\frac{-3}{10}\)
\(=1-\frac{11}{14}-\frac{14}{12}+\frac{5}{6}+\frac{1}{2}\)
\(=1-\left(\frac{66}{84}+\frac{98}{84}-\frac{70}{84}-\frac{42}{84}\right)\)
Mik làm tiếp nhé tại lúc nãy bấm nhầm!
Câu c/ (tiếp theo)
\(=1-\frac{52}{84}\)
\(=\frac{84}{84}-\frac{52}{84}=\frac{32}{84}=\frac{8}{21}\)
Câu a: Sai đề
Tìm các giá trị của x để căn thức sau có nghĩa:
a) \(\sqrt{4-5x}\)
b) \(\sqrt{\frac{x^2+1}{x-3}}\)
c) \(\sqrt{\frac{x-1}{x^2+2}}\)
d) \(\sqrt{\frac{2x-3}{x-1}}\)
e) \(\frac{\sqrt{2x-3}}{\sqrt{x-1}}\)
2/ Thực hiện phép tính:
a) \(\sqrt{\frac{16}{64}\cdot\frac{144}{9}\cdot\frac{25}{196}}\)
b) \(\left(\sqrt{8}+5\sqrt{2}-\sqrt{20}\right)\sqrt{5}-7\sqrt{10}\)
2.tính tổng :
A=\(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{9}+\sqrt{10}}\)
B=\(\frac{2}{\sqrt{1}+\sqrt{3}}+\frac{2}{\sqrt{3}+\sqrt{5}}+\frac{2}{\sqrt{5}+\sqrt{7}}+\frac{2}{\sqrt{7}+\sqrt{9}}\)
\(A=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{9}+\sqrt{10}}\)
\(=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{10}-\sqrt{9}\)
\(=\sqrt{10}-1\)
\(B=\frac{2}{\sqrt{1}+\sqrt{3}}+\frac{2}{\sqrt{3}+\sqrt{5}}+\frac{2}{\sqrt{5}+\sqrt{7}}+\frac{2}{\sqrt{7}+\sqrt{9}}\)
\(=\sqrt{3}-\sqrt{1}+\sqrt{5}-\sqrt{3}+\sqrt{7}-\sqrt{5}+\sqrt{9}-\sqrt{7}\)
\(=\sqrt{9}-1\)
\(\frac{\sqrt{x}}{\sqrt{x}+3}+\frac{2\sqrt{x}}{\sqrt{x}-3}-\frac{3x+9}{x-9}\)
\(\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{1}{\sqrt{x}+2}-\frac{3\sqrt{x}}{x+\sqrt{x}-2}\)
\(\frac{2}{\sqrt{x}-1}+\frac{2}{\sqrt{x}+1}-\frac{5-\sqrt{x}}{x-1}\)
\(\left(\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\frac{\sqrt{x}-2}{x-1}\right)\cdot\frac{\sqrt{x}+1}{\sqrt{x}}\)
\(\frac{1}{\sqrt{1}-\sqrt{2}}-\frac{1}{\sqrt{2}-\sqrt{3}}+\frac{1}{\sqrt{3}-\sqrt{4}}-\frac{1}{\sqrt{4}-\sqrt{5}}+\frac{1}{\sqrt{5}-\sqrt{6}}-\frac{1}{\sqrt{6}-\sqrt{7}}+\frac{1}{\sqrt{7}-\sqrt{8}}-\frac{1}{\sqrt{8}-\sqrt{9}}\)
RUT GON
Rút gọn : \(\frac{1}{\sqrt{1}-\sqrt{2}}-\frac{1}{\sqrt{2}-\sqrt{3}}+\frac{1}{\sqrt{3}-\sqrt{4}}-\frac{1}{\sqrt{4}-\sqrt{5}}+\frac{1}{\sqrt{5}-\sqrt{6}}-\frac{1}{\sqrt{6}-\sqrt{7}}+\frac{1}{\sqrt{7}-\sqrt{8}}-\frac{1}{\sqrt{8}-\sqrt{9}}\)
với n >0, ta có :
\(\left(\sqrt{n+1}+\sqrt{n}\right)\left(\sqrt{n+1}-\sqrt{n}\right)=n+1-n=1\Rightarrow\frac{1}{\sqrt{n+1}-\sqrt{n}}=\sqrt{n+1}+\sqrt{n}\)
Gọi biểu thức đã cho là A
\(A=\frac{1}{-\left(\sqrt{2}-\sqrt{1}\right)}-\frac{1}{-\left(\sqrt{3}-\sqrt{2}\right)}+...+\frac{1}{-\left(\sqrt{8}-\sqrt{7}\right)}-\frac{1}{-\left(\sqrt{9}-\sqrt{8}\right)}\)
\(A=-\frac{1}{\sqrt{2}-\sqrt{1}}+\frac{1}{\sqrt{3}-\sqrt{2}}-...-\frac{1}{\sqrt{8}-\sqrt{7}}+\frac{1}{\sqrt{9}-\sqrt{8}}\)
\(A=-\left(\sqrt{2}+\sqrt{1}\right)+\left(\sqrt{3}+\sqrt{2}\right)-...-\left(\sqrt{8}+\sqrt{7}\right)+\left(\sqrt{9}+\sqrt{8}\right)\)
\(A=-\sqrt{1}+\sqrt{9}=2\)
\(\frac{1}{\sqrt{n}-\sqrt{n+1}}=\frac{\sqrt{n}+\sqrt{n+1}}{\left(\sqrt{n+1}+\sqrt{n}\right)\left(\sqrt{n}-\sqrt{n+1}\right)}=-\sqrt{n}-\sqrt{n+1}\)