(\(\frac{x+\sqrt{x}}{\sqrt{x}+1}\)+\(\frac{2\sqrt{x}-2}{1-\sqrt{x}}\)) (\(\sqrt{x}+2\) ) Với x ≥ 0; x≠1
Chứng minh các biểu thức sau không phụ thuộc vào biến:
a) A = \(\frac{1}{x}.\left(\frac{\sqrt{x+1}+\sqrt{x-1}}{\sqrt{x+1}-\sqrt{x-1}}+\frac{\sqrt{x+1}-\sqrt{x-1}}{\sqrt{x+1}+\sqrt{x-1}}\right)\) với x>1
b) B = \(\frac{2x}{x+3\sqrt{x}+2}+\frac{5\sqrt{x}+1}{x+4\sqrt{x}+3}+\frac{\sqrt{x}+10}{x+5\sqrt{x}+6}\) với x>= 0
c) C = \(\frac{\sqrt{a^3}+a}{a^2+\sqrt{a^5}}.\left(\frac{b^2}{a-\sqrt{a^2-b^2}}+\frac{b^2}{a+\sqrt{a^2-b^2}}\right)\) với a>0 và |a| > |b|
d) D = \(\frac{a+b\sqrt{a}}{b-a}.\sqrt{\frac{ab+a^2-2\sqrt{a^3b}}{b^2+2b\sqrt{a}+a}}:\frac{a}{\sqrt{a}+\sqrt{b}}\) với b>a>0
p=\(\left(\frac{\sqrt{x}+1}{2\sqrt{x}-2}-\frac{\sqrt{x}-1}{2\sqrt{x}+2}-\frac{\sqrt{x}+1}{1-x}\right):\frac{x+2\sqrt{x}}{x+\sqrt{x}}\)với x>0,\(x\ne1\)
\((\frac{\sqrt{x}+1}{2\sqrt{x}-2}-\frac{\sqrt{x}-1}{2\sqrt{x}+2}-\frac{\sqrt{x}+1}{1-x})\div\frac{x+2\sqrt{x}}{x+\sqrt{x}}\)
\(=(\frac{\sqrt{x}+1}{2(\sqrt{x}-1)}-\frac{\sqrt{x}-1}{2(\sqrt{x}+1)}+\frac{\sqrt{x}+1}{x-1})\div\frac{\sqrt{x}(\sqrt{x}+2)}{\sqrt{x}(\sqrt{x}+1)}\)
\(=(\frac{(\sqrt{x}+1)^2+\left(\sqrt{x}-1\right)^2+2\left(x-1\right)}{2(x-1)}\div\frac{(\sqrt{x}+2)}{(\sqrt{x}+1)}\)
Khai triển ra nhé, mk làm như trên thì lâu lắm nên bn tự lm nhé
\(=\frac{2\left(3\sqrt{x}+1\right)}{2(x-1)}\times\frac{\sqrt{x}+1}{\sqrt{x}+2}\)
\(=\frac{(3\sqrt{x}+1)}{(\sqrt{x}-1)(\sqrt{x}+2)}\)
1. Cho A = \(\left(\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\frac{\sqrt{x}-2}{x-1}\right):\frac{\sqrt{x}}{\sqrt{x}+1}\) với x > 0 và x khác 1.
a) Rút gọn A.
b) Tìm các giá trị nguyên của x để A có giá trị nguyên.
2. Rút gọn:
a) \(\left(2-\frac{a+\sqrt{a}}{\sqrt{a}+1}\right)\left(2-\frac{2\sqrt{a}-a}{\sqrt{a}-2}\right)\)với a >= 0 và a khác 4.
b) \(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}-\frac{\sqrt{x}+1}{x+\sqrt{x}}\right):\frac{\sqrt{x}+1}{x}\) với a > 0 và x khác 1.
c) \(\left(\frac{1-x\sqrt{x}}{1-x}+\sqrt{x}\right)\left(\frac{1-\sqrt{x}}{1-x}\right)^2\) với x >= 0 và x khác 1.
Rút gọn:
A= (\(\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\frac{\sqrt{x}-2}{x-1}\)). \(\frac{\sqrt{x}+1}{\sqrt{x}}\)với x>0 và x\(\ne1\)
B= (\(\frac{1}{\sqrt{x}-1}-\frac{1}{\sqrt{x}}\)) : \(\frac{\sqrt{x}+1}{x^2-x}\)với x>0 và x\(\ne1\)
C= ( \(\frac{1}{a-\sqrt{a}}+\frac{1}{\sqrt{a}-1}\)) : \(\frac{1}{\sqrt{a}.\left(\sqrt{a}-1\right)}\)với a>0 và a \(\ne1\)
D= (\(\frac{x\sqrt{x}-1}{x-\sqrt{x}}-\frac{x\sqrt{x}+1}{x+\sqrt{x}}\)) : \(\frac{2.\left(x-2\sqrt{x}+1\right)}{x-1}\)với x>0 và x\(\ne1\)
E= ( \(\frac{a\sqrt{a}+1}{a-\sqrt{a}-2}+\frac{a}{2\sqrt{a}-a}\)) :\(\frac{1-\sqrt{a}}{2-\sqrt{a}}\)với a>0, a\(\ne4\),a\(\ne1\) F= ( \(\frac{2\sqrt{a}}{a\sqrt{a}+a+\sqrt{a}+1}+\frac{1}{\sqrt{a}+1}\)): (\(1+\frac{\sqrt{a}}{a+1}\)) với a>0 giúp mình vs mình tick cho nhiều lắm ạ!!! Mình đang cần gấp mn ơi!?!Rút gọn:
\(A=\left(\frac{2\sqrt{x}}{x\sqrt{x}+x+\sqrt{x}+1}-\frac{1}{\sqrt{x}+1}\right):\left(\frac{2\sqrt{x}}{\sqrt{x}+1}-1\right)\) với \(x\ge0;x\ne1\)
\(B=\left(\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{\sqrt{x}+1}{\sqrt{x}-1}\right):\left(\frac{1}{2\sqrt{x}}-\frac{\sqrt{x}}{2}\right)^2\) với \(x>0;x\ne1\)
a) đk : \(x\ge0\) ; \(x\ne1\)
A=\(\left(\frac{2\sqrt{x}}{\left(x+1\right)\left(\sqrt{x}+1\right)}-\frac{x+1}{\left(\sqrt{x}+1\right)\left(x+1\right)}\right):\left(\frac{\sqrt{x}-1}{\sqrt{x}+1}\right)\)
\(=\left(\frac{-\left(\sqrt{x}-1\right)^2}{\left(x+1\right)\left(\sqrt{x}+1\right)}\right):\left(\frac{\sqrt{x}-1}{\sqrt{x}+1}\right)\) \(=\frac{1-\sqrt{x}}{x+1}\)
b) đk : \(x\ne0;x\ne1\)
B=\(\left(\frac{\left(\sqrt{x}-1\right)^2-\left(\sqrt{x}+1\right)^2}{x-1}\right):\left(\frac{1-x}{2\sqrt{x}}\right)^2\) \(=\left(\frac{-2\sqrt{x}}{x-1}\right):\left(\frac{1-x}{2\sqrt{x}}\right)^2\) \(=\frac{-4x}{\left(x-1\right)^3}\)
\(\left(\frac{2}{\sqrt{x}-2}+\frac{3}{2\sqrt{x}+1}-\frac{5\sqrt{x}-7}{2x-3\sqrt{x}-2}\right)\): \(\frac{2\sqrt{x}+3}{5x-10\sqrt{x}}\)(với x >0, x khác 4)
Ta có: \(\left(\dfrac{2}{\sqrt{x}-2}+\dfrac{3}{2\sqrt{x}+1}-\dfrac{5\sqrt{x}-7}{2x-3\sqrt{x}-2}\right):\dfrac{2\sqrt{x}+3}{5x-10\sqrt{x}}\)
\(=\dfrac{4\sqrt{x}+2+3\sqrt{x}-6-5\sqrt{x}+7}{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\cdot\dfrac{5\sqrt{x}\left(\sqrt{x}-2\right)}{2\sqrt{x}+3}\)
\(=\dfrac{2\sqrt{x}+3}{2\sqrt{x}+1}\cdot\dfrac{5\sqrt{x}}{2\sqrt{x}+3}\)
\(=\dfrac{5\sqrt{x}}{2\sqrt{x}+1}\)
Rút gọn các biểu thức sau:
\(B=\frac{\sqrt{1+\sqrt{1-x^2}}[\left(1+x\right)\sqrt{1+x}-\left(1-x\right)\sqrt{1-x}]}{x\left(2+\sqrt{1-x^2}\right)}\)
\(N=\left(\frac{\sqrt{1+x}}{\sqrt{1+x}-\sqrt{1-x}}\frac{1-x}{\sqrt{1-x^2}-1+x}\right).\left(\sqrt{\frac{1}{x^2}-1}-\frac{1-x}{x}\right).\frac{x}{1-x+\sqrt{1-x^2}}\)với -1<x<0
Rút gọn
\(\frac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}\) -( \(\sqrt{x}-\sqrt{y}\))2
\(\sqrt{\frac{x-2\sqrt{x}}{x+2\sqrt{x}+1}}\) (x >_ 0)
\(\frac{x-1}{\sqrt{y}-1}\) . \(\sqrt{\frac{\left(2\sqrt{y}+1\right)^2}{\left(x-1\right)}}\) với x # 1, y# 1,y>0
\(\sqrt{\frac{\sqrt{a}-1}{\sqrt{b}+1}}\) : \(\sqrt{\frac{\sqrt{b}-1}{\sqrt{a}+1}}\) rồi tính giá trị với a= 7,25 b= 3,25
4x - \(\sqrt{8}\) + \(\sqrt{\frac{x^3+2x^2}{\sqrt{x+2}}}\) với x =- \(\sqrt{2}\)
a, ĐKXĐ : \(\left[{}\begin{matrix}x\ge0\\ y>0\end{matrix}\right.\) hoặc \(\left[{}\begin{matrix}x>0\\y\ge0\end{matrix}\right.\)
Ta có :\(\frac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2\)
= \(\frac{\sqrt{x^2}\sqrt{x}+\sqrt{y^2}\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2=\frac{\sqrt{x^3}+\sqrt{y^3}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2\)
= \(\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)}{\sqrt{x}+\sqrt{y}}-\left(x-2\sqrt{xy}+y\right)\)
= \(\left(x-\sqrt{xy}+y\right)-\left(x-2\sqrt{xy}+y\right)\)
= \(x-\sqrt{xy}+y-x+2\sqrt{xy}-y\)
= \(\sqrt{xy}\)
\(\sqrt{\frac{\sqrt{a}-1}{\sqrt{b}+1}}:\sqrt{\frac{\sqrt{b}-1}{\sqrt{a}+1}}\) \(=\sqrt{\frac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\left(\sqrt{b}+1\right)\left(\sqrt{b}-1\right)}}\)\(=\sqrt{\frac{a^2-1}{b^2-1}}\) (*)
Thay a=7,25 và b= 3,25 vào (*) ta có:
\(\sqrt{\frac{7,25^2-1}{3,25^2-1}}\) \(=\frac{5\sqrt{33}}{4}:\frac{3\sqrt{17}}{4}=\frac{5\sqrt{33}}{3\sqrt{17}}=\frac{5\sqrt{561}}{51}\)
1. Cho A = \(\left(\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\frac{\sqrt{x}-2}{x-1}\right):\frac{\sqrt{x}}{\sqrt{x}+1}\) với x > 0 và x khác 1.
a) Rút gọn A.
b) Tìm các giá trị nguyên của x để A có giá trị nguyên.
2. Rút gọn:
a) \(\left(2-\frac{a+\sqrt{a}}{\sqrt{a}+1}\right)\left(2-\frac{2\sqrt{a}-a}{\sqrt{a}-2}\right)\)với a >= 0 và a khác 4.
b) \(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}-\frac{\sqrt{x}+1}{x+\sqrt{x}}\right):\frac{\sqrt{x}+1}{x}\) với a > 0 và x khác 1.
c) \(\left(\frac{1-x\sqrt{x}}{1-x}+\sqrt{x}\right)\left(\frac{1-\sqrt{x}}{1-x}\right)^2\) với x >= 0 và x khác 1.
2.
a)
\(\left(2-\frac{a+\sqrt{a}}{\sqrt{a}+1}\right)\left(2-\frac{2\sqrt{a}-a}{\sqrt{a}-2}\right)\\ =\left(2-\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}\right)\left(2+\frac{\sqrt{a}\left(2-\sqrt{a}\right)}{2-\sqrt{a}}\right)\\ =\left(2-\sqrt{a}\right)\left(2+\sqrt{a}\right)\\ =2^2-\left(\sqrt{a}\right)^2\\ =4-a\)
b)
\(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}-\frac{\sqrt{x}+1}{x+\sqrt{x}}\right):\frac{\sqrt{x}+1}{x}\\ =\left(\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}-\frac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\right)\cdot\frac{x}{\sqrt{x}+1}\\ =\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)\cdot\frac{x}{\sqrt{x}+1}\\ =\frac{x-1}{\sqrt{x}}\cdot\frac{x}{\sqrt{x}+1}\\ =\sqrt{x}\left(\sqrt{x}-1\right)\\ =x-\sqrt{x}\)
c)
\(\left(\frac{1-x\sqrt{x}}{1-x}+\sqrt{x}\right)\left(\frac{1-\sqrt{x}}{1-x}\right)^2\\ =\left(\frac{1-\sqrt{x^3}}{1-x}+\sqrt{x}\right)\cdot\frac{\left(1-\sqrt{x}\right)^2}{\left(1-x\right)^2}\\ =\left(\frac{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}+x\right)}{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}+\sqrt{x}\right)\cdot\frac{\left(1-\sqrt{x}\right)^2}{\left[\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)\right]^2}\\ =\left(\frac{1+\sqrt{x}+x+\sqrt{x}\left(1+\sqrt{x}\right)}{1+\sqrt{x}}\right)\cdot\frac{1}{\left(1+\sqrt{x}\right)^2}\\ =\frac{2x+2\sqrt{x}+1}{1+\sqrt{x}}\cdot\frac{1}{\left(1+\sqrt{x}\right)^2}\)
\(=\frac{2x+2\sqrt{x}+1}{\left(1+\sqrt{x}\right)^3}\)
1. (Ko viết lại đề nha :v)
a)
\(A=\left(\frac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}-\frac{\sqrt{x}-2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right):\frac{\sqrt{x}}{\sqrt{x}+1}\\ =\left(\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\right)\cdot\frac{\sqrt{x}+1}{\sqrt{x}}\\ =\left(\frac{x+2\sqrt{x}-\sqrt{x}-2-x-\sqrt{x}+2\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\right)\cdot\frac{\sqrt{x}+1}{\sqrt{x}}\\ =\frac{2\sqrt{x}}{\left(\sqrt{x}+1\right)\left(x-1\right)}\cdot\frac{\sqrt{x}+1}{\sqrt{x}}\)
\(=\frac{2}{x-1}\)
b) Để A đạt giá trị nguyên thì \(2⋮x-1\Leftrightarrow x-1\inƯ\left(2\right)\)
\(\Leftrightarrow x-1\in\left\{-1;1;-2;2\right\}\\ \Leftrightarrow x\in\left\{0;2;-1;3\right\}\)
Vậy......