Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
phạm hoàng lâm
Xem chi tiết
Trương Minh Nghĩa
Xem chi tiết
Trương Minh Nghĩa
8 tháng 12 2021 lúc 16:15

Đểu thật

Khách vãng lai đã xóa

mk ko ghõ đc

Khách vãng lai đã xóa
Trương Minh Nghĩa
8 tháng 12 2021 lúc 16:16

Chắc do lỗi rồi

Câu trả lời của bạn đã được quản trị viện duyệt rồi nhé

HT

Khách vãng lai đã xóa
camcon
Xem chi tiết
Lê Đình Hiếu
23 tháng 8 2021 lúc 22:36

bất đẳng thức cosi là khái niệm dùng để chỉ bất đẳng thức so sánh giữa trung bình cộng và trung bình nhân của n số thực không âm. Trong đó, trung bình cộng của n số thực không âm luôn lớn hơn hoặc bằng trung bình nhân của chúng

Lê Đình Hiếu
23 tháng 8 2021 lúc 22:37

Hệ quả 1: Nếu tổng hai số dương không đổi thì tích của chúng lớn nhất khi hai số đó bằng nhau                                                                     Hệ quả 2: Nếu tích hai số dương không đổi thì tổng của hai số này nhỏ nhất khi hai số đó bằng nhau

Lê Đình Hiếu
23 tháng 8 2021 lúc 22:46

a) \left( \frac{a}{b}+\frac{b}{a} \right)\left( \frac{a}{{{b}^{2}}}+\frac{b}{{{a}^{2}}} \right)\ge 4

Áp dụng bđt côsi ta có:

\frac{a}{b}+\frac{b}{a}\ge 2\sqrt{\frac{a}{b}.\frac{b}{a}}=2,\,\,\frac{a}{{{b}^{2}}}+\frac{b}{{{a}^{2}}}\ge 2\sqrt{\frac{a}{{{b}^{2}}}.\frac{b}{{{a}^{2}}}}=\frac{2}{\sqrt{ab}}

\(\Rightarrow\) \left( \frac{a}{b}+\frac{b}{a} \right)\left( \frac{a}{{{b}^{2}}}+\frac{b}{{{a}^{2}}} \right)\ge \frac{4}{\sqrt{ab}} (1)

\(\Leftrightarrow\) 2={{a}^{2}}+{{b}^{2}}\ge 2\sqrt{{{a}^{2}}{{b}^{2}}}=2ab\Rightarrow ab\le 1 (1)

Từ (1) và (2) \(\Rightarrow\) \left( \frac{a}{b}+\frac{b}{a} \right)\left( \frac{a}{{{b}^{2}}}+\frac{b}{{{a}^{2}}} \right)\ge 4 (ĐPCM)

Đẳng thức xảy ra \(\Leftrightarrow\) \displaystyle a=b=1.

蝴蝶石蒜
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 6 2021 lúc 20:07

BĐT cần chứng minh tương đương:

\(\left(a+b\right)\left(\dfrac{a+b}{ab}\right)\ge4\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)

Vậy BĐT đã cho đúng

Dấu "=" xảy ra khi và chỉ khi \(a=b\)

Nguyễn Susari
13 tháng 6 2021 lúc 20:00

Áp dụng bất đẳng thức Cô-si ta có:

\((a+b)\ge 2\sqrt{ab}\)

\(\left(\dfrac1a+\dfrac1b\right)\ge 2\sqrt{\dfrac1{ab}}\)

\(\Rightarrow (a+b)\left(\dfrac1a+\dfrac1b\right) \ge 2\sqrt{ab}2\sqrt{\dfrac1{ab}}=4\) (đpcm)

Dấu \("="\) xảy ra khi \(a=b\)

Yeutoanhoc
13 tháng 6 2021 lúc 20:00

Áp dụng BĐT với hai số dương ta có:

`a+b>=2sqrt{ab}`

`1/a+1/b>=2/sqrt{ab}`

`=>(a+b)(1/a+1/b)>=2sqrt{ab}. 2/sqrt{ab}=4`

Dấu "=" xảy ra khi `a=b>0`

hằng hồ thị hằng
Xem chi tiết
Akai Haruma
29 tháng 5 2021 lúc 23:01

Bài 1:

Vì $a\geq 1$ nên:

\(a+\sqrt{a^2-2a+5}+\sqrt{a-1}=a+\sqrt{(a-1)^2+4}+\sqrt{a-1}\)

\(\geq 1+\sqrt{4}+0=3\)

Ta có đpcm

Dấu "=" xảy ra khi $a=1$

 

Akai Haruma
29 tháng 5 2021 lúc 23:04

Bài 2:
ĐKXĐ: x\geq -3$

Xét hàm:

\(f(x)=x(x^2-3x+3)+\sqrt{x+3}-3\)

\(f'(x)=3x^2-6x+3+\frac{1}{2\sqrt{x+3}}=3(x-1)^2+\frac{1}{2\sqrt{x+3}}>0, \forall x\geq -3\)

Do đó $f(x)$ đồng biến trên TXĐ

\(\Rightarrow f(x)=0\) có nghiệm duy nhất

Dễ thấy pt có nghiệm $x=1$ nên đây chính là nghiệm duy nhất.

hà minh
Xem chi tiết
Thảo Phương
6 tháng 12 2021 lúc 8:45

1.\(a.CTHH:Fe_2\left(SO_4\right)_x\\ Tacó:56.2+\left(32+16.4\right).x=400\\ \Rightarrow x=3\\ VậyCTHH:Fe_2\left(SO_4\right)_3\\ b.CTHH:Fe_xO_3\\ Tacó:56.x+16.3=160\\ \Rightarrow x=2\\ VậyCTHH:Fe_2O_3\)

 

Thảo Phương
6 tháng 12 2021 lúc 8:48

2. \(M_{Cu}=64\left(g/mol\right)\\ M_{H_2O}=2+16=18\left(g/mol\right)\\ M_{CO_2}=14+16.2=44\left(g/mol\right)\\ M_{CuO}=64+16=80\left(g/mol\right)\\ M_{HNO_3}=1+14+16.3=63\left(g/mol\right)\\ M_{CuSO_4}=64+32+16.4=160\left(g/mol\right)\\ M_{Al_2\left(SO_4\right)_3}=27.2+\left(32+16.4\right).3=342\left(g/mol\right)\)

miumiu_006
Xem chi tiết
Phạm Linh Chi
Xem chi tiết
迪丽热巴·迪力木拉提
1 tháng 5 2021 lúc 9:41

\(\dfrac{x^2+4}{4}\ge x\)

\(\Leftrightarrow\dfrac{4\left(x^2+4\right)}{4}\ge4x\)

\(\Leftrightarrow x^2+4\ge4x\)

\(\Leftrightarrow x^2-4x+4\ge0\)

\(\Leftrightarrow\left(x-2\right)^2\ge0\) (Luôn đúng)

Vậy đẳng thức ban đầu được chứng minh.

\(\dfrac{x^2+4}{4}\ge x\)

\(\Leftrightarrow\dfrac{x^2+4}{4}\ge\dfrac{4x}{4}\)

\(\Leftrightarrow x^2+4+4x\ge0\)
\(\Leftrightarrow\left(x+2\right)^2\ge0\)    (luôn đúng)

 

Phùng Minh Phúc
Xem chi tiết
Akai Haruma
23 tháng 1 2022 lúc 16:40

Lời giải:

Bổ sung điều kiện $a,b$ là các số dương. Áp dụng BĐT Cô-si ta có:

$a+b\geq 2\sqrt{ab}$

$\frac{1}{a}+\frac{1}{b}\geq 2\sqrt{\frac{1}{ab}}$

$\Rightarrow (a+b)(\frac{1}{a}+\frac{1}{b})\geq 2\sqrt{ab}.2\sqrt{\frac{1}{ab}}=4$

Ta có đpcm 

Dấu "=" xảy ra khi $a=b$