CHO HÌNH VẼ
a, chứng minh AM⊥BC
b, Chứng minh AM là tia phân giác góc A
Cho tam giác ABC. Vẽ tia AM là tia phân giác của BAC ( M thuộc BC ), qua M vẽ MF//AC ( F thuộc AB ), ME//AB ( E thuộc AC )
a) Chứng minh AM là tia phân giác của EMF
b) Cho CEM=75 độ. Tính góc MFB?
c) Vẽ Ex là tia phân giác của CEM. Chứng minh Ex//AM
vì ME//AB=>GÓC EMA=EAB(so le trong)
vì AC //MF => EA//MF=>GÓC EAM = AMF( so le trong)
Xét tam giác EAM và AMF có : AM là cạnh chung , góc EMA=EAB , EAM =AMF => tam giác EAM=FMA(g-c-g)
=>góc EMA=AMF(2 góc tương ứng), mà MA nàm giữa ME VÀ MF
=>AM là phân giác của EMF
cho tam giác ABC cân tại A . AM là tia phân giác của góc A ( M thuộc B,C) . D,E là hình chiếu của M trên AB và Ac . chứng minh rằng tam giác MDB= tam giác MEC vẽ hình giúp mik ạ^^
Xét tam giác ABC cân tại A có AM là phân giác
=> đồng thời AM là đường trung tuyến => BM = MC
Xét tam giác MDB và tam giác MEC ta có :
^MBD = ^MCE ( gt )
BM = MC ( cmt )
^MDA = ^MEC = 900
Vậy tam giác MDB = tam giác MEC ( ch - gv )
Xét ΔMDB vuông tại D và ΔMEC vuông tại E có
MB=MC
\(\widehat{B}=\widehat{C}\)
Do đó: ΔMDB=ΔMEC
Cho △ABC có AB=AC. Gọi M là trung điểm của BC.Chứng minh:a)△AMB=△AMC b)AM là phân giác góc BACc) AM vuông góc với BCd)Vẽ At là tia phân giác của góc ngoài đỉnh A, chứng minh At//BC(cần câu d gấp)GIÚP MÌNH VỚI!!!!!!!
Bài 1: Cho tam giác ABC với AB=AC. Lấy I là trung điểm của BC . Trên tia BC lấy điểm N , trên tia CB lấy điểm M sao cho CN=BM .
a) Chứng minh góc ABI=góc ACI và AI là tia phân giác của góc BAC
b) Chứng minh AM=AN
c) Chứng minh AI vuông góc với BC
Bài 2 : Cho tam giác vuông tại A có góc C=30 độ
a) Tính góc B
b) Vẽ tia phân giác của góc B cắt AC tại D
c) Trên cạnh BC lấy điểm M sao cho BM =AB . Chứng minh : tam giác ABD=tam giác MBD
D qua B vẽ đường thẳng xy vuông góc tại BA . Từ A kẻ đường thẳng song song với BD cắt xy ở A . Chứng minh: AK=BD
Tính góc AKB
Bài 3: Cho tam giác ABC vuông ở A và AB=AC . Gọi K là trung điểm của BC
a) Chứng minh tam giác AKB=tam giác AKC
b) Chứng minh AK vuông góc với BC
c) Từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E. Chứng minh EC//AK
Bài 1:
a)+ Vì AB = ACNÊN
==>Tam giác ABC cân tại A
==>góc ABI = góc ACI
+ Xét tam giác ABI và tam giác ACI có:
AI là cạch chung
AB = AC(gt)
BI = IC ( I là trung điểm của BC)
Vậy tam giác ABI = tam giác ACI (c.c.c)
==> góc BAI = góc CAI ( 2 góc tương ứng )
==>AI là tia phân giác của góc BAC
b)
Xét tam giác BAM và tam giác BAN có:
AB = AC (gt)
góc B = góc C (cmt)
BM = CN ( gt )
Vậy tam giác BAM = tam giác CAN (c.g.c)
==> AM = AN (2 cạnh tương ứng)
c)
vì tam giác BAI = tam giác CAI (cmt)
==>góc AIB = góc AIC (2 góc tương ứng)
Mà góc AIB+ góc AIC = 180độ ( kề bù)
nên AIB=AIC=180:2=90
==>AI vuông góc với BC
Bài 1: Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC tại H.
a) Chứng minh rằng :HB=HC
b) Chứng minh rằng: AH là tia phân giác của góc A
Bài 2: Cho tam giác ABC cân tại A có góc A < 90 độ. Vẽ BM vuông góc với AC tại M, CN vuông góc với AB tại N
a) Chứng minh AM= AN
b) Gọi I là giao điểm của BM và CN. Chứng minh rằng AI là tia phân giác của góc A.
b1
a) CM tam giác chứaHB và chứa HC = nhau
b) CM tam giác chứa 2 góc A = nhau
Cho tam giác ABC có AB = AC = 5 cm, BC=6cm . Đường trung tuyến AM xuất phát từ đỉnh A của tam giác ABC
a) Chứng minh tam giác AMB = tam giác AMC và AM là tia phân giác của góc A
b) Chứng minh AM vuông góc BC
c) Tính độ dài các đoạn thẳng AM , BM
d) Từ M vẽ ME vuông góc AB ( E thuộc AB ) và MF vuông góc AC. Tam giác MEF là tam giác j ? Vì sao ?
ban tu ve hinh nha:
xet tam giacAMB va tam giaAMC
AB=AC
AM chung
M1=m2
suy ra hai tam giacAmb va amc bang nhau.
b, Vì tam giác AMB=tam giác AMC ( theo câu a) nên góc AMB=góc AMC(2 góc tương ứng).
mà AMB + AMC = 180 độ ( kề bù ) nên suy ra góc AMB=góc AMC=180 độ:2= 90 độ
\(\Rightarrow\) AM vuông góc với BC
c, Vì AM là đường trung tuyến xuất phát từ đỉnh A nên M là trung điểm của BC suy ra BM=MC=BC:2=3(cm)
Áp dụng định lí Pytago vào tam giác vuông AMB ( góc AMB =90 độ) , ta có:
AB2=AM2+MB2
\(\Rightarrow\) BM2=52-32=25-9=16
\(\Rightarrow\)BM = \(\sqrt{16}\) =4 (cm)
Vì MB=MC mà MB=4cm nên MC=4(cm)
cho tam giác ABC vuông tại A
a) trên cạnh BC lấy D sao cho BA=BD.từ D vẽ Dx vuông với BC (DC cắt AC tại H). chứng minh BH là tia phân giác góc ABC
b) vẽ trung tuyến AM. chứng minh tam giác ABM cân
a: Xét ΔBAH vuông tại A và ΔBDH vuông tại D có
BH chung
BA=BD
=>ΔBAH=ΔBDH
=>góc ABH=góc DBH
=>BH là phân giác của góc ABD
b: ΔABC vuông tại A
mà AM là trung tuyến
nên MA=MB
=>ΔMAB cân tại M
Cho tam giác ABC vuông tại A có M là trung điểm BC. Vẽ MD vuông góc AC tại D.
a) Chứng minh ADMB là hình thang vuông
b) Lấy E thuộc tia MD,MD bằng DE. Chứng minh AMCE là hình bình hành
c) Gọi F là đối xứng của M qua BA. Chứng minh AF bằng AE
d) AB cắt MF tại Q. CQ cắt AM tại I. Chứng minh 3AD=BC,3AB=DE
Cho ΔABC biết góc B = góc C = 45° vẽ tia Ax là tia đối của tia AC . vẽ tia Ay là tia phân giác của góc Bax
a, Tính góc BAC
b, Chứng minh Ay //BC
c, Từ A kẻ đường thẳng AH vuông góc với Ay
( H thuộc BC ) . Chứng minh góc ABC = góc HAC
Cảm ơn các bạn vẽ luôn hình nha
Ta có hình vẽ:
a) Xét Δ ABC có: BAC + ACB + ABC = 180o (tổng 3 góc của Δ)
=> BAC + 45o + 45o = 180o
=> BAC + 90o = 180o
=> BAC = 180o - 90o = 90o
b) Ta có: BAC + BAx = 180o (kề bù)
=> 90o + BAx = 180o
=> BAx = 180o - 90o = 90o
Vì Ay là phân giác của BAx nên \(xAy=yAB=\frac{BAx}{2}=\frac{90^o}{2}=45^o\)
Có: yAB = ABC = 45o
Mà yAB và ABC là 2 góc ở vị trí so le trong nên Ay // BC (đpcm)
c) Vì Ay // BC; \(AH\perp Ay\) => \(BC\perp Ay\)
=> AHC = 90o
=> HAC + ACH = 90o
=> HAC + 45o = 90o
=> HAC = 90o - 45o
=> HAC = 45o = ABC (đpcm)
a) cho tam giác ABC cân tại A. Trên tia đối của tia AB lây điểm M, trên tia đối của tia AC lấy điểm N sao cho AM=AN. chứng minh rằng tứ giác MNBC là hình thang cân.
b) cho tứ giác ABCD có AD=AB=BC và gócA+gócC=180 độ. chứng minh rằng:
-DB là phân giác góc D
-ABCD là hình thang cân
a: Xét ΔANM và ΔACB có
AN/AC=AM/AB
\(\widehat{NAM}=\widehat{CAB}\)
Do đó: ΔANM\(\sim\)ΔACB
Suy ra: \(\widehat{ANM}=\widehat{ACB}\)
hay MN//BC
Xét tứ giác MNBC có MN//BC
nên MNBC là hình thang
mà MB=NC
nên MNBC là hình thang cân
b: Xét tứ giác ABCD có \(\widehat{BAD}+\widehat{BCD}=180^0\)
nên ABCD là tứ giác nội tiếp
Xét đường tròn ngoại tiếp tứ giác ABCD có
\(\widehat{ADB}\) là góc nội tiếp chắn cung AB
\(\widehat{BDC}\) là góc nội tiếp chắn cung BC
mà \(sđ\stackrel\frown{AC}=sđ\stackrel\frown{BC}\)
nên \(\widehat{ADB}=\widehat{CDB}\)
hay DB là tia phân giác của góc ADC