Rút gọn
a) (x+a)^2-x^2/a^2+4x^2+4ax
Rút gọn :
A,\(\dfrac{2ax^2-4ax+2a}{5b-5b^2}\)
B,\(\dfrac{(x+y)^2-z^2}{x+y+z}\)
\(A=\dfrac{2a\left(x^2-2x+1\right)}{5b\left(1-b\right)}=\dfrac{2a\left(x-1\right)^2}{5b\left(1-b\right)}\)
\(B=\dfrac{\left(x+y+z\right)\left(x+y-z\right)}{x+y+z}=x+y-z\)
Rút gọn các biểu thức sau ( x + a ) 2 - x 2 a 2 + 4 x 2 + 4 a x
Rút gọn các biểu thức sau ( x + a ) 2 - x 2 a 2 + 4 x 2 + 4 a x
Rút gọn:
\(a,\dfrac{2ax^2-4ax+2a}{5b-5bx^2}\)
\(b,\dfrac{\left(x+y^2\right)-z^2}{x+y+z}\)
\(a,\dfrac{2ax^2-4ax+2a}{5b-5bx^2}\)
\(=\dfrac{2a\left(x^2-2x+1\right)}{5b\left(1-x^2\right)}\)
\(=\dfrac{2a\left(x-1^2\right)}{5b\left(x-1\right)\left(1+x\right)}\)
\(=\dfrac{2a\left(x-1\right)}{5b\left(x+1\right)}\)
\(b,\dfrac{\left(x+y\right)^2-z^2}{x+y+z}\)
\(=\dfrac{\left(x+y-z\right)\left(x+y+z\right)}{x+y+z}=x+y-z\)
Rút gọn:
\(\dfrac{2ax^2-4ax+2a}{5b-5bx^2}\)
\(\dfrac{4x^2-4xy}{5x^3-5x^2y}\)
\(\dfrac{\left(x+y\right)^2-z^2}{x+y+z}\)
\(\dfrac{x^6+2x^3y^3+y^6}{x^7-xy^6}\)
\(\dfrac{2a\cdot x^2-4ax+2a}{5b-5bx^2}\)
\(=\dfrac{2a\left(x^2-2x+1\right)}{5b\left(1-x^2\right)}\)
\(=\dfrac{-2a\left(x-1\right)^2}{5b\left(x-1\right)\left(x+1\right)}=\dfrac{-2a\left(x-1\right)}{5b\left(x+1\right)}\)
\(\dfrac{4x^2-4xy}{5x^3-5x^2y}\)
\(=\dfrac{4x\cdot x-4x\cdot y}{5x^2\cdot x-5x^2\cdot y}\)
\(=\dfrac{4x\left(x-y\right)}{5x^2\left(x-y\right)}=\dfrac{4}{5x}\)
\(\dfrac{\left(x+y\right)^2-z^2}{x+y+z}\)
\(=\dfrac{\left(x+y+z\right)\left(x+y-z\right)}{x+y+z}\)
=x+y-z
\(\dfrac{x^6+2x^3y^3+y^6}{x^7-xy^6}\)
\(=\dfrac{\left(x^3+y^3\right)^2}{x\left(x^6-y^6\right)}\)
\(=\dfrac{\left(x^3+y^3\right)^2}{x\left(x^3+y^3\right)\left(x^3-y^3\right)}=\dfrac{x^3+y^3}{x\left(x^3-y^3\right)}\)
1) rút gọn phân thức:
a) \(\frac{x^2-y^2}{\left(x+y\right)\left(ay-ax\right)}\)
b) \(\frac{2ax-2x-3y+3ay}{4ax+4x+6y+6ay}\)
c) \(\frac{x^3-x^2-10x-8}{x^3-4x^2+5x-20}\)
giúp mk nhé!!!!!!!!!!!!!!!
a) \(\frac{x^2-y^2}{\left(x+y\right)\left(ay-\text{ax}\right)}=\frac{\left(x+y\right)\left(x-y\right)}{-a\left(x+y\right)\left(x-y\right)}=\frac{-1}{a}\)
b) \(\frac{2ax-2x-3y+3ay}{4ax+\text{4x}+6y+6ay}=\frac{2x\left(a-1\right)+3y\left(a-1\right)}{\text{4x}\left(a+1\right)+6y\left(a+1\right)}\)
\(=\frac{\left(a-1\right)\left(2x+3y\right)}{2\left(a+1\right)\left(2x+3y\right)}=\frac{a-1}{2\left(a+1\right)}\)
Đào Thị Quỳnh Anh ko giải thì đi chỗ khác ko tiếp người ko giải bài!!!!!!
575675658769764564576756856858768764575675687
Cho biểu thức A=(3+x/3-x - 3 -x/3+x - 4x^2/x^2-9) : (5/3-x - 4x+2/3x-x^2) a. Rút gọn A b. Tìm x để A=3 c.tìm x để A>4x
Rút gọn biểu thức. Chứng minh rằng biểu thức rút gọn không âm vs mọi giá trị của biến thuộc tập xác định (coi a là hằng):
1 - (\(\dfrac{a+x}{ax-x^2}\) + \(\dfrac{2a+3x}{x^2-a^2}\)) : \(\dfrac{a^4-4x^4}{a^4x-a^2x^3}\)
\(A=\left(\dfrac{1+x}{1-x}-\dfrac{1-x}{1+x}+\dfrac{4x^2}{1-x^2}\right):\dfrac{4x^2-4}{x^2-2x+1}\)
a, Rút gọn A
ĐKXĐ: \(x\ne\pm1\)
\(A=\left(\dfrac{\left(1+x\right)^2}{\left(1-x\right)\left(1+x\right)}-\dfrac{\left(1-x\right)^2}{\left(1-x\right)\left(1+x\right)}+\dfrac{4x^2}{\left(1-x\right)\left(1+x\right)}\right):\dfrac{4\left(x-1\right)\left(x+1\right)}{\left(x-1\right)^2}\)
\(=\left(\dfrac{x^2+2x+1-\left(x^2-2x+1\right)+4x^2}{\left(1-x\right)\left(1+x\right)}\right):\dfrac{4\left(x+1\right)}{x-1}\)
\(=\left(\dfrac{4x^2+4x}{\left(1-x\right)\left(1+x\right)}\right):\dfrac{4\left(x+1\right)}{x-1}\)
\(=\dfrac{4x\left(x+1\right)}{\left(1-x\right)\left(1+x\right)}.\dfrac{\left(x-1\right)}{4\left(x+1\right)}=-\dfrac{x}{x+1}\)