Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
26 tháng 6 2018 lúc 15:17

Theo tính chất đường phân giác của tam giác ta có  E A E B = O A O B = 2 2 .

Vì E nằm giữa hai điểm A, B nên E A → = − 2 2 E B → . *  

Gọi E(x; y). Ta có  E A → = 1 − x ; 3 − y E B → = 4 − x ; 2 − y .

Từ (*), suy ra  1 − x = − 2 2 4 − x 3 − y = − 2 2 2 − y ⇔ x = − 2 + 3 2 y = 4 − 2 .

 Chọn D.

Trần
Xem chi tiết
Hồng Phúc
9 tháng 4 2021 lúc 22:11

1.

a, Trọng Tâm G: \(\left\{{}\begin{matrix}x_G=\dfrac{x_A+x_B+x_C}{3}=\dfrac{8}{3}\\y_G=\dfrac{y_A+y_B+y_C}{3}=\dfrac{8}{3}\end{matrix}\right.\)

\(\Rightarrow G=\left(\dfrac{8}{3};\dfrac{8}{3}\right)\)

b, \(ABCD\) là hình bình hành \(\Leftrightarrow\vec{AB}=\vec{DC}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_B-x_A=x_C-x_D\\y_B-y_A=y_C-y_D\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_D=0\\y_D=6\end{matrix}\right.\)

\(\Rightarrow D=\left(0;6\right)\)

c, \(\vec{AM}=3\vec{BC}\Leftrightarrow\left\{{}\begin{matrix}x_M=x_A+3\left(x_C-x_B\right)=-6\\y_M=y_A+3\left(y_C-y_B\right)=14\end{matrix}\right.\)

\(\Rightarrow M=\left(-6;14\right)\)

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
24 tháng 9 2023 lúc 20:28

a)

Ta có: \(\overrightarrow {AB}  = \left( {2 - 1;4 - 3} \right) = \left( {1;1} \right),\;\overrightarrow {AC}  = \left( { - 3 - 1;2 - 3} \right) = \left( { - 4; - 1} \right)\)

Hai vectơ này không cùng phương (vì \(\frac{1}{{ - 4}} \ne \frac{1}{{ - 1}}\)).

Do đó các điểm A, B, C không cùng nằm trên một đường thẳng.

Vậy A, B, C là ba đỉnh của một tam giác.

b) Trung điểm M của đoạn thẳng AB có tọa độ là \(\left( {\frac{{1 + 2}}{2};\frac{{3 + 4}}{2}} \right) = \left( {\frac{3}{2};\frac{7}{2}} \right)\)

c) Trọng tâm G của tam giác ABC có tọa độ là \(\left( {\frac{{1 + 2 + \left( { - 3} \right)}}{3};\frac{{3 + 4 + 2}}{3}} \right) = \left( {0;3} \right)\)

d) Để O(0; 0) là trọng tâm của tam giác ABD thì \(\left( {0;0} \right) = \left( {\frac{{{x_A} + {x_B} + {x_D}}}{3};\frac{{{y_A} + {y_B} + {y_D}}}{3}} \right)\)

\( \Leftrightarrow \left( {0;0} \right) = \left( {\frac{{1 + 2 + x}}{3};\frac{{3 + 4 + y}}{3}} \right)\)

\(\begin{array}{l} \Leftrightarrow \left( {0;0} \right) = \left( {1 + 2 + x;3 + 4 + y} \right)\\ \Leftrightarrow \left( {0;0} \right) = \left( {x + 3;y + 7} \right)\\ \Leftrightarrow \left\{ \begin{array}{l}0 = x + 3\\0 = y + 7\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x =  - 3\\y =  - 7\end{array} \right.\end{array}\)

Vậy tọa độ điểm D là (-3; -7).

tranthuylinh
Xem chi tiết
Phạm Đức Dâng
Xem chi tiết
Thu Hiền
21 tháng 4 2016 lúc 21:36

Phương trình hoành độ giao điểm \(3x^2+2mx+3m-4=0\left(1\right)\) với x. Đường thẳng d cắt đồ thị (C) tại hai điểm phân biệt khi và chỉ khi phương trình (1) có 2 nghiệm phân biệt khác -1 

\(\Leftrightarrow\begin{cases}9m^2-36m+48>0\\0.m-1\ne0\end{cases}\) (đúng với mọi m)

Gọi \(x_1;x_2\) là các nghiệm của phương trình (1), ta có : \(\begin{cases}x_1+x_2=-m\\x_1x_2=\frac{3m-4}{3}\end{cases}\) (*)

Giả sử \(A\left(x_1;x_1+m\right);B\left(x_2;x_2+m\right)\)

Khi đó ta có \(OA=\sqrt{x^2_1+\left(x_1+m\right)^2};OA=\sqrt{x^2_2+\left(x_2+m\right)^2}\)

Kết hợp (*) ta được \(OA=OB=\sqrt{x_1^2+x_2^2}\) 

Suy ra tam giác OAB cân tại O

Ta có \(AB=\sqrt{2\left(x_1-x_2\right)^2}\). Tam giác OAB đều \(\Leftrightarrow OA^2=AB^2\Leftrightarrow x_1^2+x_2^2=2\left(x_1-x_2\right)^2\)          

                                                                                                     \(\Leftrightarrow\left(x_1+x_2\right)^2-6x_1x_2=0\)

                                                                                                     \(\Leftrightarrow m^2-6m+8=0\Leftrightarrow m=2\) hoặc m=4

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
14 tháng 11 2017 lúc 4:45

a) – Vẽ đồ thị y = 2x (1):

    Cho x= 0 ⇒ y= 0 ta được O (0, 0)

    Cho x= 2 ⇒ y = 4 ta được điểm (2; 4)

- Vẽ đồ thị y = 0,5x (2):

    Cho x= 0 ⇒ y = 0 ta được O (0; 0)

    Cho x = 4 ⇒ y = 2 ta được điểm (4; 2)

- Vẽ đồ thị y = -x + 6 (3):

    Cho x = 0 ⇒ y = 6 được điểm (0; 6)

    Cho y = 0 ⇒ x = 6 được điểm (6; 0)

Để học tốt Toán 9 | Giải bài tập Toán 9

b) Theo đề bài A, B theo thứ tự là giao điểm của đường thẳng (3) với các đường thẳng (1) và (2), nên ta có:

Hoành độ giao điểm của A là nghiệm của phương trình:

    - x + 6 = 2x ⇒ x = 2

=> y = 4 => A(2; 4)

Hoành độ giao điểm của B là nghiệm của phương trình:

    - x + 6 = 0,5x ⇒ x = 4

⇒ y = 2 ⇒ B(4; 2)

c) Ta có:

Để học tốt Toán 9 | Giải bài tập Toán 9

Để học tốt Toán 9 | Giải bài tập Toán 9

 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
13 tháng 4 2017 lúc 3:27

Giải bài 4 trang 45 sgk Hình học 10 | Để học tốt Toán 10

a) D nằm trên trục Ox nên D có tọa độ D(x ; 0)

Khi đó :

Giải bài 4 trang 45 sgk Hình học 10 | Để học tốt Toán 10

Giải bài 4 trang 45 sgk Hình học 10 | Để học tốt Toán 10

Giải bài 4 trang 45 sgk Hình học 10 | Để học tốt Toán 10

Vậy chu vi tam giác OAB là P = AO + BO + AB = √10 + 2√5 + √10 = 2√5 + 2√10

Giải bài 4 trang 45 sgk Hình học 10 | Để học tốt Toán 10

Nguyễn Vân Anh
Xem chi tiết
Đỗ Đức Lộc
Xem chi tiết
Nguyễn Việt Lâm
16 tháng 12 2020 lúc 6:50

\(\left\{{}\begin{matrix}\overrightarrow{AB}=\left(1;-1\right)\\\overrightarrow{BC}=\left(-3;4\right)\end{matrix}\right.\)

\(\Rightarrow\overrightarrow{u}=3\overrightarrow{AB}+2\overrightarrow{BC}=\left(-3;5\right)\)

Gọi \(D\left(x;y\right)\Rightarrow\overrightarrow{DC}=\left(1-x;5-y\right)\)

Để ABCD là hbh \(\Leftrightarrow\overrightarrow{AB}=\overrightarrow{DC}\)

\(\Leftrightarrow\left\{{}\begin{matrix}1-x=1\\5-y=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=0\\y=6\end{matrix}\right.\)

\(\Rightarrow D\left(0;6\right)\)