Tìm tất cả các số thực x,y,z thỏa mãn :\(x\sqrt{1-y^2}+y\sqrt{2-z^2}+z\sqrt{3-x^2}=3\)
Tìm tất cả các số thực x,y,z thỏa mãn :\(x\sqrt{1-y^2}+y\sqrt{2-z^2}+z\sqrt{3-x^3}=3\)
đánh sai đề rồi bạn êi, phải là \(x\sqrt{1-y^2}+y\sqrt{2-z^2}+z\sqrt{3-x^2}=3\Leftrightarrow2x\sqrt{1-y^2}\) \(+2y\sqrt{2-z^2}+2z\sqrt{3-x^2}=6\)
<=> \(\left(x-\sqrt{1-y^2}\right)^2+\left(y-\sqrt{2-z^2}\right)^2+\left(z-\sqrt{3-x^2}\right)^2=0\)
<=> ..bla bla tự làm nhá !
tìm tất cả các số thực z;y;z thỏa mãn
\(x\sqrt{1-y^2}+y\sqrt{2-z^2}+z\sqrt{3-x^2}=3\)
có \(x\sqrt{1-y^2}\le\frac{x^2+1-y^2}{2}\)
\(y\sqrt{2-z^2}\le\frac{y+2-z^2}{2}\) cô si
\(z\sqrt{3-x^2}\le\frac{z+3-x^2}{2}\)
\(\Rightarrow x\sqrt{1-y^2}+y\sqrt{2-z^2}+z\sqrt{3-x^2}\le\frac{6}{2}=3\)
dấu = xảy ra \(\Leftrightarrow\hept{\begin{cases}x=\sqrt{1-y^2}\\y=\sqrt{2-z^2}\\z=\sqrt{3-x^2}\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2=1-y^2\\y^2=2-z^2\\z^2=3-x^2\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=0\\z=\sqrt{2}\end{cases}}}\)
chết mình ghi thiếu ^2 ở y và z :v hjhj
Tìm các số thực x,y,z thỏa mãn đk \(x\sqrt{1-y^2}+y\sqrt{2-z^2}+z\sqrt{3-x^2}=3\)
Với các số thực x>1, y>2, z>3 thỏa mãn x+y+z= 28 tìm GTLN của biểu thức
\(P=\sqrt{x-1}+2\sqrt{y-4}+3\sqrt{z-9}\)
Ta có P \(\le\dfrac{1^2+\left(\sqrt{x-1}\right)^2}{2}+\dfrac{2^2+\left(\sqrt{y-4}\right)^2}{2}+\dfrac{3^2+\left(\sqrt{z-9}\right)^2}{2}\)
\(=\dfrac{1+x-1+4+y-4+9+z-9}{2}=\dfrac{x+y+z}{2}=\dfrac{28}{2}=14\)
Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}1=\sqrt{x-1}\\2=\sqrt{y-4}\\3=\sqrt{z-9}\end{matrix}\right.\Leftrightarrow x=2;y=8;z=18\)(tm)
Với các số thực x>1, y>2, z>3 thỏa mãn x+y+z= 28 tìm GTNN của biểu thức P=
\(\sqrt{x-1}\) + \(2\sqrt{y-4}\) + \(3\sqrt{z-9}\)
Biểu thức này chỉ có GTLN, ko có GTNN
Có tất cả bao biêu bộ ba số thực (x,y,z) thỏa mãn đồng thời các điều kiện dưới đây \(2^{\sqrt[3]{x^2}}.4^{\sqrt[3]{y^2}}.16^{\sqrt[3]{z^2}}=128\) và \(\left(xy^2+z^4\right)^2=4+\left(xy^2-z^4\right)^2\)
Pt đầu tương đương: \(\sqrt[3]{x^2}+2\sqrt[3]{y^2}+4\sqrt[3]{z^2}=7\)
Pt 2 tương đương:
\(\left(xy^2+z^4\right)^2-\left(xy^2-z^4\right)^2=4\)
\(\Leftrightarrow4xy^2z^4=4\)
\(\Leftrightarrow xy^2z^4=1\) (1)
Quay lại pt đầu, áp dụng AM-GM:
\(7=\sqrt[3]{x^2}+\sqrt[3]{y^2}+\sqrt[3]{y^2}+\sqrt[3]{z^2}+\sqrt[3]{z^2}+\sqrt[3]{z^2}+\sqrt[3]{z}\ge7\sqrt[7]{\sqrt[3]{x^2}.\sqrt[3]{y^4}.\sqrt[3]{z^8}}\)
\(\Leftrightarrow\sqrt[21]{x^2y^4z^8}\le1\)
\(\Leftrightarrow x^2y^4z^8\le1\)
\(\Rightarrow\left|xy^2z^4\right|\le1\Rightarrow xy^2z^4\le1\)
Dấu "=" xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}x^2=y^2=z^2\\xy^2z^4=1\\x>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=\pm1\\z=\pm1\end{matrix}\right.\)
Các bộ thỏa mãn là: \(\left(1;1;1\right);\left(1;1;-1\right);\left(1;-1;1\right);\left(1;-1;-1\right)\)
Tìm các số thực x, y, z thỏa mãn đẳng thức
\(x+y+z+8=2\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\)
\(x+y+z+8=2\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\)
\(\Leftrightarrow x+y+z+8-2\sqrt{x-1}-4\sqrt{y-2}-6\sqrt{z-3}=0\)
\(\Leftrightarrow\left[\left(x-1\right)-2\sqrt{x-1}+1\right]+\left[\left(y-2\right)-4\sqrt{y-2}+4\right]+\left[\left(z-3\right)-6\sqrt{z-3}+9\right]=0\)
\(\Leftrightarrow\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{x-1}-1=0\\\sqrt{y-2}-2=0\\\sqrt{z-3}-3=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}\sqrt{x-1}=1\\\sqrt{y-2}=2\\\sqrt{z-3}=3\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=2\\y=6\\z=12\end{cases}}\)
ĐK: \(x\ge1,y\ge2,z\ge3\).
\(x+y+z+8=2\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\)
\(\Leftrightarrow x-1-2\sqrt{x-1}+1+y-2-4\sqrt{y-2}+4+z-3-6\sqrt{z-3}+9=0\)
\(\Leftrightarrow\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{x-1}-1=0\\\sqrt{y-2}-2=0\\\sqrt{z-3}-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=6\\z=12\end{cases}}\)(thỏa mãn)
ĐK : x ≥ 1 ; y ≥ 2 ; z ≥ 3
\(\Leftrightarrow\left[\left(x-1\right)-2\sqrt{x-1}+1\right]+\left[\left(y-2\right)-4\sqrt{y-2}+4\right]+\left[\left(z-3\right)-6\sqrt{z-3}+9\right]=0\)
\(\Leftrightarrow\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{x-1}-1=0\\\sqrt{y-2}-2=0\\\sqrt{z-3}-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=6\\z=12\end{cases}}\left(tm\right)\)
Tìm tất cả các số tự nhiên x, y, z thỏa mãn:
\(\sqrt{x+4\sqrt{3}}=\sqrt{y}+\sqrt{z}\)
Tìm bộ ba số thực x, y, z thỏa mãn: \(\dfrac{2}{\sqrt{x}+2\sqrt{y}+3\sqrt{z}}-\dfrac{1}{2\sqrt{xy}+6\sqrt{yz}+3\sqrt{xz}}=\dfrac{1}{3}\)
Đặt \(\left(\sqrt{x};2\sqrt{y};3\sqrt{z}\right)=\left(a;b;c\right)\Rightarrow a;b;c\ge0\)
Ta có:
\(\dfrac{2}{a+b+c}-\dfrac{1}{ab+bc+ca}\le\dfrac{2}{a+b+c}-\dfrac{3}{\left(a+b+c\right)^2}=-3\left(\dfrac{1}{a+b+c}-\dfrac{1}{3}\right)^2+\dfrac{1}{3}\le\dfrac{1}{3}\)
Đẳng thức xảy ra khi và chỉ khi: \(a=b=c=1\Rightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{1}{4}\\z=\dfrac{1}{9}\end{matrix}\right.\)