PTĐTTNT (x + 2)(x+3)(x+4)(x+5) – 8
PTĐTTNT
(x+2)(x+3)(x+4)(x+5)-24
(x+2)(x+3)(x+4)(x+5)-24
= [(x+2)(x+5)][(x+3)(x+4)] -24
=(x^2+7x+10)(x^2+7x+12)-24
thay x^2+7x+11=y
=> (y-1)(y+1)-24=y^2-1^2-24=y^2-25=(y-5)(y+5)
= (x^2+7x+11-5)(x^2+7x+11+5)=(x^2+7x+6)(x^2+7x+16)=(x^2+x+6x+6)(x^2+7x+16)=[x(x+1)+6(x+1)]((x^2+7x+16)=(x+1)(x+6)(x^2+7x+16)
(x + 2)(x + 3)(x + 5)(x + 7) - 24
= [(x + 2)(x + 5)][(x + 3)(x + 4)] - 24
=(x2 + 7x + 10)(x2 + 7x +12) - 24
Đặt x2 + 7x + 11 = t ; ta có:
(t - 1)(t + 1) - 24
= t2 - 12 - 24
= t2 - 25
= (t - 5)(t + 5)
Thay t = x2 + 7x + 11 ta được:
(x2 + 7x + 11 - 5)(x2 + 7x +11 + 5)
= (x2 + 7x + 6)(x2 + 7x + 16)
= (x + 1)(x + 6)(x2 + 7x + 16)
Chúc bn học tốt
\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)
\(=\left(x+2\right)\left(x+5\right)\left(x+3\right)\left(x+4\right)-24\)
\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)
\(=\left(x^2+7x+10\right)\left(x^2+7x+10+2\right)-24\)( * )
Đặt \(t=x^2+7x+10\), khi đó (*) trở thành:
\(t\left(t+2\right)-24\)
\(=t^2+2t-24\)
\(=\left(t-4\right)\left(t+6\right)\)
Thay \(t=x^2+7x+10\) vào, ta được:
\(\left(x^2+7x+10-4\right)\left(x^2+7x+10+6\right)\)
\(=\left(x^2+7x+6\right)\left(x^2+7x+16\right)\)
Vậy ...
1. Rút gọn: P= (x-y)^2+(x+y)^2-2(x+y)(x-y)-4x^2
2. PTĐTTNT: a) x^3-x^2y+3x-3y
b) x^3-2x^2-4xy^2+x
c) (x+2)(x+3)(x+4)(x+5)-8
Help meeee !!!!!!
em ko lam dc anh ehh
em chua gap bai nao nhu the nay. noi dung hon la chua den lop lam haha
PTĐTTNT :
`-(x+2)+3(x^2-4)`
\(-\left(x+2\right)+3\left(x^2-4\right)\)
\(=3\left(x-2\right)\left(x+2\right)-\left(x+2\right)\)
\(=\left(x+2\right)\left[3\left(x-2\right)-1\right]=\left(x+2\right)\left(3x-7\right)\)
PTĐTTNT
a, x3+4x2-24x+24
b,x8+x4+1
a) =x3-2x2+6x2-12x -12x +24
= x2(x-2)+6x(x-2)-12(x-2)
= (x-2)(x2+6x-12)
mk giải đc câu a thôi, bn zô jup mk lại vs
\(a,x^3+4x^2-24x+24\)
\(=x^3+6x^2-12x-2x^2-12x+24\)
\(=\left(x^3-2x^2\right)+\left(6x^2-12x\right)-\left(12x-24\right)\)
\(=x^2\left(x-2\right)+6x\left(x-2\right)-12\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2+6x-12\right)\)
b)
x8+x4+1
= x8+x7+x6-x7-x6-x5+x5+x4+x3-x3-x2-x+x2+x+1
= x6(x2+x+1)-x5(x2+x+1) +x3(x2+x+1)-x(x2+x+1)+(x2+x+1)
= (x2+x+1)(x6-x5+x3-x+1)
= (x2+x+1)(x6-x5+x4-x4+x3-x2+x2-x+1)
= (x2+x+1)[x4(x2-x+1) - x2(x2-x+1) + (x2-x+1)]
= (x2+x+1)(x2-x+1)(x4-x2+1)
PTĐTTNT
(x+1)(x+2)(x+3)(x+4) - 24
(x + 1)(x + 2)(x + 3)(x + 4) - 24
= [(x + 1)(x + 4)][(x + 2)(x + 3)] - 24
= (x2 + 4x + x +4)(x2 + 3x + 2x + 12) - 24
= (x2 + 5x + 4)(x2 + 5x + 12) - 24
Đặt t = x2 + 5x + 8
Ta có: x2 + 5x + 4 = x2 + 5x + 8 - 4 (1)
x2 + 5x + 12 = x2 + 5x + 8 + 4 (2)
Thay t = x2 + 5x + 8 vào (1) và (2), ta có:
⇒ (t - 4)(t + 4) - 24
= t2 - 16 - 24
= t2 - 40
= (t - \(\sqrt{40}\))(t + \(\sqrt{40}\))
= (x2 + 5x + 8 - \(\sqrt{40}\))(x2 + 5x + 8 + \(\sqrt{40}\))
PTĐTTNT
(x+1)(x+2)(x+3)(x+4) + 1
\(\left(x+1\right)\left(x+4\right)\left(x+2\right)\left(x+3\right)+1\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)+1\)
\(=\left(x^2+5x+4\right)^2+2\left(x^2+5x+4\right)+1\)
\(=\left(x^2+5x+4+1\right)^2\)
\(=\left(x^2+5x+5\right)^2\)
PTĐTTNT:
a) x^3+4x^2-29x+24
b) x^6+3x^5+4x^4+4x^3+4x^2+3x+1
c)x^12+1
a) x3 + 4x2 - 29x + 24
= x3 - 3x2 + 7x2 - 21x - 8x + 24
= x2(x-3) + 7x(x-3) - 8(x-3)
= (x-3)(x2+7x-8)
=(x-3)(x2+8x-x-8)
= (x-3)[(x2+8x)-(x+8)]
= (x-3)[x(x+8)-(x+8)]
= (x-3)(x+8)(x-1)
PTĐTTNT bằng 3 cách
a)x^2+7x+12
b)3x^2-5x+2
c)x^2+9x-10
d)x^2-7x-8
e)2x^2+3x-5
a) \(x^2+7x+12\)
\(=x^2+3x+4x+12\)
\(=x\left(x+3\right)+4\left(x+3\right)\)
\(=\left(x+3\right)\left(x+4\right)\)
b) \(3x^2-5x+2\)
\(=3x^2-3x-2x+2\)
\(=3x\left(x-1\right)-2\left(x-1\right)\)
\(=\left(x-1\right)\left(3x-2\right)\)
a) x2 + 7x + 12 = x2 + 3x + 4x + 12 = x(x + 3) + 4(x + 3) = (x + 4)(x + 3)
b) 3x2 - 5x + 2 = 3x2 - 3x - 2x + 2 = 3x(x - 1) - 2(x - 1) = (3x - 2)(x - 1)
c) x2 + 9x - 10 = x2 + 10x - x - 10 = x(x + 10) - (x + 10) = (x - 1)(x + 10)
d) x2 - 7x - 8 = x2 - 8x + x - 8 = x(x - 8) + (x - 8) = (x + 1)(x - 8)
e) 2x2 + 3x - 5 = 2x2 + 5x - 2x - 5 = x(2x + 5) - (2x + 5) = (x - 1)(2x + 5)
PTĐTTNT: x4+4x3+6x2+4x+5
Ta có tổng quát: \(\left(ax^2+bx+c\right)\)\(\left(mx^2+nx+p\right)\)\(\circledast\)
-Nhân ra ta được: \(amx^4+\left(an+bm\right)x^3+\left(ap+bn+cm\right)x^2+\left(bp+cn\right)x+cp\)
-Áp dụng phương pháp hệ số bất định, ta có:
am=1
an+bm=4 (1)
ap+bn+cm=6 (2)
bp+cn=4 (3)
cp=5
-Xét a=m=1 và c=1, p=5
thay vào (1), ta được: n+b=4 (4)
thay vào (3), ta được: n+5b=4 (5)
từ (4),(5)\(\Rightarrow\)n=4 và b=0
giờ thay tất cả vào phương trình (3), ta được: 5+0+1=6 (T/M)
\(\Rightarrow\)Thay vào\(\circledast\), ta được: \(\left(x^2+1\right)\left(x^2+4x+5\right)\)
Cách 2: Ta tách \(6x^2\) thành \(5x^2+x^2\)
ta được: \(x^4+4x^3+5x^2+x^2+4x+5\)
\(\Leftrightarrow x^2\left(x^2+4x+5\right)+\left(x^2+4x+5\right)\)
\(\Leftrightarrow\left(x^2+1\right)\left(x^2+4x+5\right)\)