Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Furry Litter cute
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 12 2021 lúc 20:34

a: Xét ΔOAM vuông tại A có AH là đường cao

nên \(OH\cdot OM=OA^2=R^2\)

zzzzz
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 12 2021 lúc 20:57

a: Xét ΔOAM vuông tại A có AH là đường cao

nên \(OH\cdot OM=OA^2=R^2\)

Minmin
Xem chi tiết
Mi Mi Lê Hoàng
Xem chi tiết
Hoàng Minh Quân
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 12 2021 lúc 10:56

a: Xét ΔOAM và ΔOBM có

OA=OB

\(\widehat{AOM}=\widehat{BOM}\)

OM chung

Do đó: ΔOAM=ΔOBM

Suy ra: MB là tiếp tuyến của (O)

Nguyễn Thị Thu Hằng
Xem chi tiết
Phạm Lan Hương
23 tháng 10 2019 lúc 16:12

Violympic toán 9

Khách vãng lai đã xóa
sdsdsd gggsss
23 tháng 10 2019 lúc 13:03

bạn tự vẽ hình nha thông cảm !

Vẽ hai đg thẳng OA và OB

Đặt R là bán kính của đường tròn tâm O

Vì A và B thuộc đường tròn tâm O nên ta có :

\(OA=OB=R\) (1)

Mà ta có:

\(OM\perp AB\) (2)

Từ (1) và (2) ta suy ra OM là đường trung trực của đoạn thẳng AB (t/c đường trung trực)

Xét tam giác OAB ta có:

\(OA=OB=R\)

\(\Rightarrow\) Tam giác OAB là tam giác cân tại O

Mà ta có : OH là đg cao của tam giác cân AOB

\(\Rightarrow\) OH là đường phân giác của tam giác cân AOB

⇒ ∠MOB=∠MOA

Xét tam giác OAM và tam giác MOB ta có:

OM:chung

∠MOA=∠MOB (cmt)

OA=OB(=R)

⇒ tam giác AOM = tam giác BOM (c.g.c)

⇒ ∠MAO=∠MBO (hai góc tương ứng)

Mà ta có : OA⊥AM (MA là tiếp tuyến với A là tiếp điểm)

⇒∠MOB = \(90^o\)

⇒ MB là tiếp tuyến của đường tròn tâm O tiếp điểm B

b) Vì AC // MO nên ta có :

∠CAO = ∠AOM (so le trong )

∠ACB = ∠MOB (đồng vị)

Xét tam giác CAO ta có :

∠ACO + ∠AOC + ∠CAO = \(180^o\)

⇒ ∠AOC + ∠AOM + ∠MOB =\(180^o\)

⇒ C,O,B thẳng hàng

⇒ CB là đường kính của (O)

Khách vãng lai đã xóa
sdsdsd gggsss
23 tháng 10 2019 lúc 13:03

Ai giải giúp c) và d) đi

Khách vãng lai đã xóa
Phạm Năng Nguyện
Xem chi tiết
Kim Tuyền
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 8 2023 lúc 8:13

a: ΔOBC cân tại O

mà OH là đường cao

nên H là trung điểm của BC và OH là phân giác của góc BOC

=>HB=HC

b: Xét ΔMBC có

MH vừa là đường cao, vừa là đường trung tuyến

=>ΔMBC cân tại M

Xét ΔOBM  và ΔOCM có

OB=OC

góc BOM=góc COM

OM chung

Do đó: ΔOBM=ΔOCM

=>góc OCM=góc OBM=90 độ

=>OC vuông góc CM

c: ΔOMB vuông tại B

=>OB^2+BM^2=OM^2

=>BM=R*căn 3

\(S_{OBM}=\dfrac{1}{2}\cdot OB\cdot BM=\dfrac{1}{2}\cdot R\cdot R\sqrt{3}=\dfrac{R^2\sqrt{3}}{2}\)

\(S_{OCM}=\dfrac{1}{2}\cdot OC\cdot CM=\dfrac{R^2\sqrt{3}}{2}\)

=>\(S_{OBMC}=2\cdot\dfrac{R^2\sqrt{3}}{2}=R^2\sqrt{3}\)

Trân Phạm
Xem chi tiết