CM công thức: sinx.cõ + cosx.tanx = sinx + cosx
Cm đẳng thức sau: Mn giúp mình bài này với ^^
\(\dfrac{sinx}{sinx-cosx}-\dfrac{cosx}{sinx+cosx}=\dfrac{1+cot^2x}{1-cot^2x}\)
\(VT=\dfrac{\sin x}{\sin x-cosx}-\dfrac{cosx}{sinx+cosx}\\ =\dfrac{sin^2x+\sin x\cos x-\sin x\cos x+\cos^2x}{\left(\sin x-\cos x\right)\left(\sin x+\cos x\right)}\\ =\dfrac{1}{\sin^2x-\cos^2x}\)
\(VP=\dfrac{1+\cot^2x}{1-\cot^2}\\ =\left(1+\cot^2x\right)\cdot\dfrac{1}{1-\cot^2x} \\=\dfrac{1}{\sin^2x}\cdot\dfrac{1}{1-\cot^2x}\\ =\dfrac{1}{\sin^2x-\sin^2x\cdot\cot^2x}\\ =\dfrac{1}{\sin^2x-\cos^2x}=VT\)
Cho x nhọn. CM các đẳng thức sau:
\(\frac{sinx+cosx-1}{1-cosx}\) = \(\frac{2.cosx}{sinx-cosx+1}\)
\(\frac{cosx}{sinx-cosx}\) + \(\frac{sinx}{sinx+cosx}\) = \(\frac{1+cot^2x}{1-cot^2x}\)
xem câu đầu ở đây nè https://olm.vn/hoi-dap/question/1248282.html
chứng minh biểu thức sau:
\(\frac{sin^2x}{sinx-cosx}-\frac{sinx+cosx}{tan^2x-1}=sinx+cosx\)
Chứng minh các đẳng thức :
a) sin3x = 3sinx - 4sin3x
b) tan 2x + 1/cos2x = 1-2sin2x/1-sin2x
c) (cosx+sinx/cosx-sinx) - (cosx-sinx/cosx+sinx) = 2tan 2x
d) sin2x/1+cos2x = tanx
e)
a/ \(sin3x=sin\left(2x+x\right)=sin2xcosx+cos2x.sinx\)
\(=2sinxcos^2x+\left(1-2sin^2x\right)sinx=2sinx\left(1-sin^2x\right)+sinx-2sin^3x\)
\(=3sinx-4sin^3x\)
b/
\(tan2x+\frac{1}{cos2x}=\frac{sin2x}{cos2x}+\frac{1}{cos2x}=\frac{sin2x+1}{cos2x}=\frac{2sinxcosx+sin^2x+cos^2x}{cos^2x-sin^2x}\)
\(=\frac{\left(sinx+cosx\right)^2}{\left(sinx+cosx\right)\left(cosx-sinx\right)}=\frac{sinx+cosx}{cosx-sinx}=\frac{\left(sinx+cosx\right)\left(cosx-sinx\right)}{\left(cos-sinx\right)^2}\)
\(=\frac{cos^2x-sin^2x}{cos^2x+sin^2x-2sinxcosx}=\frac{1-2sin^2x}{1-sin2x}\)
c/
\(\frac{cosx+sinx}{cosx-sinx}-\frac{cosx-sinx}{cosx+sinx}=\frac{\left(cosx+sinx\right)^2-\left(cosx-sinx\right)^2}{cos^2x-sin^2x}\)
\(=\frac{2sinxcosx+2sinxcosx}{cos2x}=\frac{4sinxcosx}{cos2x}=\frac{2sin2x}{cos2x}=2tan2x\)
d/
\(\frac{sin2x}{1+cos2x}=\frac{2sinxcosx}{1+2cos^2x-1}=\frac{2sinxcosx}{2cos^2x}=\frac{sinx}{cosx}=tanx\)
e/
Chứng minh đẳng thức sau: Tanx/sinx - sinx/cotx = cosx
\(\dfrac{tanx}{sinx}-\dfrac{sinx}{cotx}=cosx\)
\(\Leftrightarrow\dfrac{\dfrac{sinx}{cosx}}{sinx}-\dfrac{sinx}{\dfrac{cosx}{sinx}}=cosx\)
\(\Leftrightarrow\dfrac{1}{cosx}-\dfrac{sin^2x}{cosx}=cosx\)
\(\Leftrightarrow\dfrac{cos^2x}{cosx}=cosx\)
\(\Rightarrowđpcm\)
Cho sinx - cosx(π-x) =-1/2
Tính giá trị biểu thức T=1/(sinx) +1/(cosx)
\(sinx-cos\left(\pi-x\right)=-\frac{1}{2}\)
\(\Leftrightarrow sinx+cosx=-\frac{1}{2}\)
\(\Rightarrow\left(sinx+cosx\right)^2=\frac{1}{4}\)
\(\Rightarrow sin^2x+cos^2x+2sinx.cosx=\frac{1}{4}\)
\(\Rightarrow1+2sinx.cosx=\frac{1}{4}\Rightarrow sinx.cosx=-\frac{3}{8}\)
\(T=\frac{1}{sinx}+\frac{1}{cosx}=\frac{sinx+cosx}{sinx.cosx}=\frac{-\frac{1}{4}}{-\frac{3}{8}}=\frac{2}{3}\)
Tìm GTLN, GTNN của các biểu thức sau
1, \(A=sinx-cosx\)
2, \(B=sinx=cosx\)
3, \(C=asinx-bcosx\)
4, \(D=sin^4x-cos^4x\)
\(A=\sqrt{2}sin\left(x-\dfrac{\pi}{4}\right)\Rightarrow-\sqrt{2}\le A\le\sqrt{2}\)
B ko rõ đề
\(C=\sqrt{a^2+b^2}\left(\dfrac{a}{\sqrt{a^2+b^2}}sinx-\dfrac{b}{\sqrt{a^2+b^2}}cosx\right)\)
Đặt \(\dfrac{a}{\sqrt{a^2+b^2}}=cosy\Rightarrow\dfrac{b}{\sqrt{a^2+b^2}}=siny\)
\(\Rightarrow C=\sqrt{a^2+b^2}\left(sinx.cosy-cosx.siny\right)=\sqrt{a^2+b^2}sin\left(x-y\right)\)
\(\Rightarrow-\sqrt{a^2+b^2}\le C\le\sqrt{a^2+b^2}\)
\(D=\left(sin^2x-cos^2x\right)\left(sin^2x+cos^2x\right)=sin^2x-cos^2x=-cos2x\)
\(\Rightarrow-1\le D\le1\)
rút gọn các biểu thức lượng giác sau:
\(\frac{sin^2x}{cosx\left(1+tanx\right)}-\frac{cos^2x}{sinx\left(1+cotx\right)}=sinx-cosx\)
\(\left(tanx+\frac{cosx}{1+sinx}\right)\left(cotx+\frac{sinx}{1+cosx}\right)=\frac{1}{sinx.cosx}\)
đề bài đầy đủ: rút gọn các biểu thức lượng giác sau trên điều kiện xác định của chúng:
\(\frac{sin^2x}{cosx+cosx.\frac{sinx}{cosx}}-\frac{cos^2x}{sinx+sinx.\frac{cosx}{sinx}}=\frac{sin^2x}{sinx+cosx}-\frac{cos^2x}{sinx+cosx}=\frac{sin^2x-cos^2x}{sinx+cosx}\)
\(=\frac{\left(sinx+cosx\right)\left(sinx-cosx\right)}{sinx+cosx}=sinx-cosx\)
\(\left(\frac{sinx}{cosx}+\frac{cosx}{1+sinx}\right)\left(\frac{cosx}{sinx}+\frac{sinx}{1+cosx}\right)=\left(\frac{sinx+sin^2x+cos^2x}{cosx\left(1+sinx\right)}\right)\left(\frac{cosx+cos^2x+sin^2x}{sinx\left(1+cosx\right)}\right)\)
\(=\left(\frac{sinx+1}{cosx\left(1+sinx\right)}\right)\left(\frac{cosx+1}{sinx\left(1+cosx\right)}\right)=\frac{1}{sinx.cosx}\)
Biến đổi thành tích biểu thức sau:
sin3x+sinx-sin2x+2(1-cosx)cosx
\(=2sin2x.cosx-2sinx.cosx+2cosx-2cos^2x\)
\(=2cosx\left(sin2x+1\right)-2cosx\left(sinx+cosx\right)\)
\(=2cosx\left(2sinx.cosx+sin^2x+cos^2x\right)-2cosx\left(sinx+cosx\right)\)
\(=2cosx\left(sinx+cosx\right)^2-2cosx\left(sinx+cosx\right)\)
\(=2cosx\left(sinx+cosx\right)\left(sinx+cosx-1\right)\)