Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn đức huy
Xem chi tiết
Lê Song Phương
Xem chi tiết
Nguyễn Quỳnh Chi
Xem chi tiết
Đoàn Đức Hà
1 tháng 3 2021 lúc 23:21

a) Chỉ là thay số nên bạn tự làm nhé. 

b) \(y_1=1\)\(y_2=f\left(y_1\right)=f\left(1\right)=1-\left|1\right|=0\)\(y_3=f\left(y_2\right)=f\left(0\right)=1-\left|0\right|=1\), cứ tiếp tục như vậy.

Dễ dàng nhận thấy rằng với \(k\)lẻ thì \(y_k=1\)\(k\)chẵn thì \(y_k=0\)(1).

Khi đó ta có: 

\(A=y_1+y_2+...+y_{2021}\)

\(A=1+0+1+...+1\)

\(A=\frac{2021-1}{2}+1=1011\)

Khách vãng lai đã xóa
ĐỖ THỊ THANH HẬU
Xem chi tiết
Nguyễn Việt Lâm
2 tháng 9 2020 lúc 17:32

\(f\left(-x\right)=\left|-sinx-cosx\right|-\left|-sinx+cosx\right|\)

\(=\left|sinx+cosx\right|-\left|sinx-cosx\right|=-f\left(x\right)\)

\(\Rightarrow f\left(x\right)+f\left(-x\right)=0\)

\(\Rightarrow T=f\left(-\pi\right)+f\left(\pi\right)+f\left(-\frac{\pi}{2}\right)+f\left(\frac{\pi}{2}\right)+...+f\left(-\frac{\pi}{n}\right)+f\left(\frac{\pi}{n}\right)+f\left(0\right)\)

\(=0+0+...+0+f\left(0\right)=f\left(0\right)\)

\(=1-1=0\)

Nam Trần
Xem chi tiết
Đặng Hoàng Uyên Lâm
Xem chi tiết
Nguyễn Thị Ngọc Thơ
29 tháng 10 2019 lúc 16:45

\(f\left(x\right)=4x\) ; \(g\left(x\right)=x^2\) \(\Rightarrow f\left(n\right)=4n\) ; \(g\left(n\right)=n^2\)

\(f\left(1\right)+f\left(2\right)+...+f\left(n\right)=4\left(1+2+...+n\right)=\frac{4n\left(n+1\right)}{2}\)

\(=\frac{4n^2+4n}{2}=\frac{4g\left(n\right)+f\left(n\right)}{2}\)

Khách vãng lai đã xóa
Kinder
Xem chi tiết
Hồng Phúc
27 tháng 1 2021 lúc 19:28

\(f\left(20\right)=f\left(1\right)+f\left(19\right)+3\left(4.1.19-1\right)=f\left(19\right)+12.19-3\)

\(f\left(19\right)=f\left(18\right)+12.18-3\)

\(f\left(18\right)=f\left(17\right)+12.17-3\)

.....

\(f\left(3\right)=f\left(2\right)+12.2-3\)

\(f\left(2\right)=f\left(1\right)+12-3\)

Cộng vế theo vế các đẳng thức trên:

\(f\left(2\right)+f\left(3\right)+...+f\left(20\right)=f\left(1\right)+f\left(2\right)+...+f\left(19\right)+12\left(1+2+...+19\right)-3.20\)

\(\Leftrightarrow f\left(20\right)=2220\)

Đoạn này bạn tính kĩ một chút nha, mình tính không biết có sai không.

Nguyễn Kiều Hạnh
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 11 2019 lúc 15:52

\(3\int\limits^1_0\left[f'\left(x\right).f^2\left(x\right)+\frac{1}{9}\right]dx\le2\int\limits^1_0\sqrt{f'\left(x\right)}f\left(x\right)dx\) (1)

Ta lại có:

\(3f'\left(x\right).f^2\left(x\right)+\frac{1}{3}\ge2\sqrt{f'\left(x\right)}.f\left(x\right)\)

\(\Rightarrow3\int\limits^1_0\left[f'\left(x\right).f^2\left(x\right)+\frac{1}{9}\right]\ge2\int\limits^1_0\sqrt{f'\left(x\right)}.f\left(x\right)dx\) (2)

Từ (1); (2) \(\Rightarrow3\int\limits^1_0\left[f'\left(x\right).f^2\left(x\right)+\frac{1}{9}\right]dx=2\int\limits^1_0\sqrt{f'\left(x\right)}.f\left(x\right)dx\)

Dấu "=" xảy ra khi và chỉ khi:

\(3f'\left(x\right).f^2\left(x\right)=\frac{1}{3}\Rightarrow3\int f'\left(x\right).f^2\left(x\right)dx=\int\frac{1}{3}dx\)

\(\Rightarrow f^3\left(x\right)=\frac{x}{3}+C\)

Thay \(x=0\Rightarrow f^3\left(0\right)=C\Rightarrow C=1\)

\(\Rightarrow f^3\left(x\right)=\frac{x}{3}+1\Rightarrow\int\limits^1_0f^3\left(x\right)dx=\int\limits^1_0\left(\frac{x}{3}+1\right)dx=\frac{7}{6}\)

Khách vãng lai đã xóa
Nguyễn Minh Tài
Xem chi tiết
Vũ Hoàng Quân
6 tháng 11 2023 lúc 22:17

Llklkksd

Đặng Khánh Duy
Xem chi tiết