Cho a,b,c,d là các số thực không âm thỏa mãn:
(a+b+c)(b+c+d)(c+a+d)(d+a+b)>0
Cho a,b,c,d là các số thực ko âm thỏa mãn (a+b+c)(b+c+d)(c+d+a)(d+a+b)>0
chứng minh rằng \(\sqrt{\frac{a}{b+c+d}}+\sqrt{\frac{b}{a+d+c}}+\sqrt{\frac{c}{d+a+b}}+\sqrt{\frac{d}{b+a+c}}\ge2\)
\(VT^2\ge\left(1+1+1+1\right)\left(\frac{a}{b+c+d}+\frac{b}{a+c+d}+\frac{c}{d+a+b}+\frac{d}{b+a+c}\right)\ge4.1=4\)
=> VT >/ 2
Dễ CM được \(\frac{a}{b+c+d}+\frac{b}{a+c+d}+\frac{c}{d+a+b}+\frac{d}{b+a+c}\ge1\)
\(\sqrt{\frac{a}{b+c+d}}+\sqrt{\frac{b}{c+d+a}}+\sqrt{\frac{c}{d+a+b}}+\sqrt{\frac{d}{a+b+c}}\)
\(=\frac{a}{\sqrt{a\left(b+c+d\right)}}+\frac{b}{\sqrt{b\left(c+d+a\right)}}+\frac{c}{\sqrt{c\left(d+a+b\right)}}+\frac{d}{\sqrt{d\left(a+b+c\right)}}\)
\(\ge\frac{a}{\frac{a+b+c+d}{2}}+\frac{b}{\frac{b+c+d+a}{2}}+\frac{c}{\frac{a+b+c+d}{2}}+\frac{d}{\frac{a+b+c+d}{2}}=2\)
Dấu '' = '' xảy ra khi a = b + c+ d
b = c+d+a
c = b+a+d
d = a+b+c
Hình như ko có a ; b; c ;d
Cho a,b,c,d là các số thực thỏa mãn a≥b≥c≥d>0 với a+b+c+d=1
CMR (a+2b+3c+4d)aabbccdd <1
Cho các số không âm a,b,c,d thay đổi thỏa mãn a +b+c+d=6.tìm GTNN :a^3+b^3+c^3+d^3.
Cho a, b, c, d là các số thực thỏa mãn ( a ; b ) ⊂ ( c ; d ) .
So sánh các số a, b, c, d ta có:
A. a < c ≤ b < d
B. c < a ≤ d < b
C. a < c < d < b
D. c ≤ a < b ≤ d
Để ( a ; b ) ⊂ ( c ; d ) thì c ≤ a < b ≤ d
Đáp án D
Cho a,b,c,d là các số thực thỏa mãn a+b+c+d=0. Chứng minh rằng :
\(7\left(a^2+b^2+c^2+d^2\right)^2\ge12\left(a^4+b^4+c^4+d^4\right)\)
BĐT này do giáo sư Vasile đề xuất, và đây là lời giải của ông ấy:
Do vai trò của các biến là như nhau, ko mất tính tổng quát, giả sử \(a^2=max\left\{a^2;b^2;c^2;d^2\right\}\)
\(\Rightarrow a^2\ge\dfrac{b^2+c^2+d^2}{3}\)
Đặt \(x^2=\dfrac{b^2+c^2+d^2}{3}\Rightarrow x^2\le a^2\) (1)
Đồng thời \(x^2=\dfrac{b^2+c^2+d^2}{3}\ge\dfrac{1}{9}\left(b+c+d\right)^2=\dfrac{a^2}{9}\Rightarrow a^2\le9x^2\) (2)
\(\left(1\right);\left(2\right)\Rightarrow\left(a^2-x^2\right)\left(a^2-9x^2\right)\le0\) (3)
Ta có:
\(b^4+c^4+d^4=\left(b^2+c^2+d^2\right)^2-2\left(b^2c^2+c^2d^2+b^2d^2\right)\le\left(b^2+c^2+d^2\right)^2-\dfrac{2}{3}\left(bc+cd+bd\right)^2\)
\(=\left(b^2+c^2+d^2\right)^2-\dfrac{1}{6}\left[\left(b+c+d\right)^2-\left(b^2+c^2+d^2\right)\right]^2=9x^4-\dfrac{1}{6}\left(a^2-3x^2\right)^2=\dfrac{45x^4+6a^2x^2-a^4}{6}\)
Do đó:
\(12\left(a^4+b^4+c^4+d^4\right)\le12a^4+12.\dfrac{45x^4+6a^2x^2-a^4}{6}=90x^4+12a^2x^2+10a^4\)
Nên ta chỉ cần chứng minh:
\(7\left(a^2+3x^2\right)^2\ge90x^4+12a^2x^2+10a^4\)
\(\Leftrightarrow a^4-10a^2x^2+9x^4\le0\)
\(\Leftrightarrow\left(a^2-9x^2\right)\left(a^2-x^2\right)\le0\) (đúng theo (3))
Vậy BĐT được chứng minh hoàn tất.
Dấu "=" xảy ra khi \(b=c=d=-\dfrac{a}{3}\) và các hoán vị của chúng
Cho a;b;c;d khác 0. Thỏa mãn a/b+c+d = b/a+d+c = c/a+b+d = d/a+b+c.CMR M=a+b/c+d + b+c/a+d + c+d/a+b + d+a/b+c không phải là số chính phương
Cho hai số thực không âm x,y ≤ 1. Biết P = l n ( 1 + x 2 ) ( 1 + y 2 ) + 8 17 ( x + y ) 2 có giá trị nhỏ nhất là - a b + 2 ln c d trong đó a, b, c, d là số tự nhiên thỏa mãn ước chung của (a,b) = (c,d) = 1. Giá trị của a+b+c+d là
A. 406
B. 56
C. 39
D. 405
Cho các số nguyên a,b,c, d thỏa mãn (-28) .a =b
35.c=d , biết rằng b và d là 2 số nguyên âm . So sánh a và c
Ta có: \(a=-\frac{b}{28}\). Mà b là số nguyên âm => a là số dương
Và : \(c=\frac{d}{35}\). Mà d là số nguyên âm => c là số âm
=> a > c
Cho a,b,c,d là các số thực dương thỏa mãn a+b=c+d và a^2+b^2=c^2+d^2.Tính a^2021 + b^2021 = c^2021+d^2021
Cho a,b,c,d là các số thực dương thỏa mãn \(\dfrac{a}{b}< \dfrac{c}{d}\)
Hãy so sánh \(\dfrac{a}{b}\) và \(\dfrac{a+c}{b+d}\)
\(\dfrac{a}{b}< \dfrac{c}{d}\Rightarrow ad< bc\\ \Rightarrow ad+ab< bc+ab\\ \Rightarrow a\left(b+d\right)< b\left(a+c\right)\)
\(\Rightarrow\)\(\dfrac{a}{b}< \dfrac{a+c}{b+d}\)