Giải phương trình :
\(\sqrt{x^2+x-1}+\sqrt{x-x^2+1}=x^2-x+2\)
Giải phương trình sau:
a, \(\sqrt{x^2-x+3}+7=10\)
b, \(\sqrt{x^2-4x+8}-7=-5\)
c, \(\sqrt{x-2}=x+1\)
d, \(\sqrt{1+x^2}-3=x\)
a: Ta có: \(\sqrt{x^2-x+3}+7=10\)
\(\Leftrightarrow x\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
b: Ta có: \(\sqrt{x^2-4x+8}-7=-5\)
\(\Leftrightarrow x^2-4x+8=4\)
\(\Leftrightarrow x-2=0\)
hay x=2
Giải phương trình :
\(\sqrt{x^2+x-1}+\sqrt{x-x^2+1}=x^2-x+2\)
Giải phương trình: \(\sqrt{x-2\sqrt{x-1}}+\sqrt{x+2\sqrt{x-1}}\)\(=2\).
Em thử ạ!
ĐKXĐ: \(x\ge1\)
Đặt \(\sqrt{x-1}=t\ge0\Rightarrow x=t^2+1\)
\(PT\Leftrightarrow\sqrt{t^2-2t+1}+\sqrt{t^2+2t+1}=2\)
\(\Leftrightarrow\sqrt{\left(t-1\right)^2}+\sqrt{\left(t+1\right)^2}=2\)
\(\Leftrightarrow\left|t-1\right|+\left|t+1\right|=2\)
Với t <-1 => ko thỏa mãn điều kiện nên ta không cần xét
Với \(-1\le t< 1\) thì pt trở thành 2 = 2 (đúng)
Kết hợp đk t >= 0 suy ra \(0\le t< 1\Leftrightarrow0\le\sqrt{x-1}< 1\Leftrightarrow1\le x< 2\) (1)
Với \(t\ge1\). Phương trình trở thành \(2t=2\Leftrightarrow t=1\)
Suy ra x = 2 (2)
Kết hợp (1) và (2) suy ra \(1\le x\le2\)
\(\sqrt{x-2\sqrt{x-1}}+\sqrt{x+2\sqrt{x-1}=2}\) \(\left(x\ge1\right)\)
\(\Leftrightarrow x-2\sqrt{x-1}+x+2\sqrt{x-1}+2\sqrt{\left(x-2\sqrt{x-1}\right)\left(x+2\sqrt{x-1}\right)}=4\)
\(\Leftrightarrow2x+2\sqrt{x^2-4\left(x-1\right)}=4\)
\(\Leftrightarrow2x+2\sqrt{x^2-4x+4}=4\)
\(\Leftrightarrow2|x-2|=4-2x\)(1)
Với \(x\ge2\) thì (1) \(\Leftrightarrow2x-4=4-2x\Leftrightarrow4x=8\Leftrightarrow x=2\)
Với \(1\le x< 2\) thì (1) \(\Leftrightarrow2\left(2-x\right)=4-2x\Leftrightarrow4-2x=4-2x\) (luôn đg)
Vậy x = 2
Giải phương trình :
\(\sqrt{3x^2-1}+\sqrt{x^2-x}-x\sqrt{x^2+1}=\frac{1}{2\sqrt{2}}\left(7x^2-x+4\right)\)
dk \(\hept{\begin{cases}3x^2-1\ge0\\x^2-x\ge0\end{cases}< =>\orbr{\begin{cases}x\ge1\\x\le\frac{-1}{\sqrt{3}}\end{cases}}}\)(1)
\(< =>2\sqrt{6x^2-2}+2\sqrt{2x^2-2x}-2x\sqrt{2x^2+2}\)=7x2-x+4
<=> (3x2-1)-2\(\sqrt{2}.\sqrt{3x^2-1}\)+ 2 + (x2+1)+2x\(\sqrt{2}.\sqrt{x^2+1}\)+2x2 + (x2-x) - 2\(\sqrt{2}\sqrt{x^2-x}\)+2 =0
<=> \(\left(\sqrt{3x^2-1}-1\right)^2+\left(\sqrt{x^2+1}+x\sqrt{2}\right)^2\)+\(\left(\sqrt{x^2-x}-\sqrt{2}\right)^2=0\)
<=> \(\hept{\begin{cases}\sqrt{3x^2-1}=\sqrt{2}\\\sqrt{x^2+1}+x\sqrt{2}=0\\\sqrt{x^2-x}=\sqrt{2}\end{cases}}< =>\hept{\begin{cases}3x^2=3\\x^2+1=2x^2\left(x< 0\right)\\x^2-x-2=0\end{cases}}\)<=> \(\hept{\begin{cases}x^2=1\\\left(x+1\right)\left(x-2\right)=0\end{cases}< =>x=-1}\) (thỏa mãn điều kiện (1)
vậy x=-1 là nghiệm
Giải phương trình :
\(\sqrt{x+9}=\sqrt{x}+\frac{2\sqrt{2}}{\sqrt{x+1}}\)
dk \(x+9\ge0;x\ge0;x+1>0< =>x\ge0;\)
\(\sqrt{x+9}-\sqrt{x}=\frac{2\sqrt{2}}{\sqrt{x+1}}< =>\frac{9}{\sqrt{x+9}+\sqrt{x}}=\frac{2\sqrt{2}}{\sqrt{x+1}}\)<=> \(9\sqrt{x+1}=2\sqrt{2}\left(\sqrt{x+9}+\sqrt{x}\right)< =>\)\(81\left(x+1\right)=16x+72+16\sqrt{x\left(x+9\right)}\)
<=> \(65x+9=16\sqrt{x\left(x+9\right)}\)<=> 4225x2+1170x+81= 256x2+144x <=> 3969x2+1026x+81=0 (vô nghiệm)
Giải phương trình :
\(\sqrt{x\left(3x+1\right)}-\sqrt{x\left(x-1\right)}=2\sqrt{x^2}\)
dk \(\hept{\begin{cases}x\left(3x+1\right)\ge0\\x\left(x-1\right)\ge0\end{cases}< =>\orbr{\begin{cases}x\ge1\\x\le\frac{-1}{3}\end{cases}}}\)
vì x khác 0 nên chia cả 2 vế cho \(\sqrt{x}\)ta được \(\sqrt{3x+1}-\sqrt{x-1}=2\sqrt{x}< =>\)\(\sqrt{x-1}+2\sqrt{x}-\sqrt{3x+1}=0< =>\)\(\sqrt{x-1}+\frac{4x-\left(3x+1\right)}{2\sqrt{x}+\sqrt{3x+1}}=0\)\(\sqrt{x-1}+\frac{x-1}{2\sqrt{x}+\sqrt{3x+1}}=0\)\(< =>\sqrt{x-1}\left(1+\frac{\sqrt{x-1}}{2\sqrt{x}+\sqrt{3x+1}}\right)=0< =>\sqrt{x-1}=0\) (vì biểu thức trong ngoặc luôn \(\ge1\)) <=> x-1= 0 <=> x=1 (thỏa mãn điều kiện)
Giải phương trình :
\(x+1=\sqrt{2\left(x+1\right)+2\sqrt{2\left(x+1\right)+2\sqrt{4\left(x+1\right)}}}\)
giải phương trình sau
\(\frac{2\sqrt{2}}{\sqrt{x+1}}+\sqrt{x}=\sqrt{x+9}\)
giải phương trình: \(\sqrt{x^2+7}-\sqrt{x^2-5}=x-1\)
Lời giải:
ĐKXĐ: \(x^2\geq 5\)
PT \(\Leftrightarrow (\sqrt{x^2+7}-4)-(\sqrt{x^2-5}-2)=x-3\)
\(\Leftrightarrow \frac{x^2+7-16}{\sqrt{x^2+7}+4}-\frac{x^2-5-4}{\sqrt{x^2-5}+2}=x-3\)
\(\Leftrightarrow \frac{(x-3)(x+3)}{\sqrt{x^2+7}+4}-\frac{(x-3)(x+3)}{\sqrt{x^2-5}+2}=x-3\)
\(\Leftrightarrow (x-3)\left[1+\frac{x+3}{\sqrt{x^2-5}+2}-\frac{x+3}{\sqrt{x^2+7}+4}\right]=0(1)\)
Với \(\forall x^2\geq 5\) thì:
\(\left\{\begin{matrix} x+3>0\\ \sqrt{x^2-5}+2< \sqrt{x^2+7}+4\end{matrix}\right.\Rightarrow \frac{x+3}{\sqrt{x^2-5}+2}>\frac{x+3}{\sqrt{x^2+7}+4}\)
\(\Rightarrow 1+\frac{x+3}{\sqrt{x^2-5}+2}-\frac{x+3}{\sqrt{x^2+7}+4}\neq 0(2)\)
Từ (1);(2) \(\Rightarrow x-3=0\Rightarrow x=3\) (thỏa mãn)
Vậy.......