Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Thùy Trang
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 10 2021 lúc 22:41

a: Ta có: \(\sqrt{x^2-x+3}+7=10\)

\(\Leftrightarrow x\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

b: Ta có: \(\sqrt{x^2-4x+8}-7=-5\)

\(\Leftrightarrow x^2-4x+8=4\)

\(\Leftrightarrow x-2=0\)

hay x=2

Le Minh Hieu
Xem chi tiết
nguyen ha giang
Xem chi tiết
tthnew
26 tháng 6 2019 lúc 7:53

Em thử ạ!

ĐKXĐ: \(x\ge1\)

Đặt \(\sqrt{x-1}=t\ge0\Rightarrow x=t^2+1\)

\(PT\Leftrightarrow\sqrt{t^2-2t+1}+\sqrt{t^2+2t+1}=2\)

\(\Leftrightarrow\sqrt{\left(t-1\right)^2}+\sqrt{\left(t+1\right)^2}=2\)

\(\Leftrightarrow\left|t-1\right|+\left|t+1\right|=2\)

Với t <-1 => ko thỏa mãn điều kiện nên ta không cần xét

Với \(-1\le t< 1\) thì pt trở thành 2 = 2 (đúng)

Kết hợp đk t >= 0 suy ra \(0\le t< 1\Leftrightarrow0\le\sqrt{x-1}< 1\Leftrightarrow1\le x< 2\) (1)

Với \(t\ge1\). Phương trình trở thành \(2t=2\Leftrightarrow t=1\)

Suy ra x = 2 (2)

Kết hợp (1) và (2) suy ra \(1\le x\le2\)

lê thị hương giang
25 tháng 6 2019 lúc 22:22

\(\sqrt{x-2\sqrt{x-1}}+\sqrt{x+2\sqrt{x-1}=2}\) \(\left(x\ge1\right)\)

\(\Leftrightarrow x-2\sqrt{x-1}+x+2\sqrt{x-1}+2\sqrt{\left(x-2\sqrt{x-1}\right)\left(x+2\sqrt{x-1}\right)}=4\)

\(\Leftrightarrow2x+2\sqrt{x^2-4\left(x-1\right)}=4\)

\(\Leftrightarrow2x+2\sqrt{x^2-4x+4}=4\)

\(\Leftrightarrow2|x-2|=4-2x\)(1)

Với \(x\ge2\) thì (1) \(\Leftrightarrow2x-4=4-2x\Leftrightarrow4x=8\Leftrightarrow x=2\)

Với \(1\le x< 2\) thì (1) \(\Leftrightarrow2\left(2-x\right)=4-2x\Leftrightarrow4-2x=4-2x\) (luôn đg)

Vậy x = 2

Le Minh Hieu
Xem chi tiết
Vũ Tiến Manh
15 tháng 10 2019 lúc 11:28

dk \(\hept{\begin{cases}3x^2-1\ge0\\x^2-x\ge0\end{cases}< =>\orbr{\begin{cases}x\ge1\\x\le\frac{-1}{\sqrt{3}}\end{cases}}}\)(1)

\(< =>2\sqrt{6x^2-2}+2\sqrt{2x^2-2x}-2x\sqrt{2x^2+2}\)=7x2-x+4

<=> (3x2-1)-2\(\sqrt{2}.\sqrt{3x^2-1}\)+ 2 + (x2+1)+2x\(\sqrt{2}.\sqrt{x^2+1}\)+2x2 + (x2-x) - 2\(\sqrt{2}\sqrt{x^2-x}\)+2 =0

<=> \(\left(\sqrt{3x^2-1}-1\right)^2+\left(\sqrt{x^2+1}+x\sqrt{2}\right)^2\)+\(\left(\sqrt{x^2-x}-\sqrt{2}\right)^2=0\)

<=> \(\hept{\begin{cases}\sqrt{3x^2-1}=\sqrt{2}\\\sqrt{x^2+1}+x\sqrt{2}=0\\\sqrt{x^2-x}=\sqrt{2}\end{cases}}< =>\hept{\begin{cases}3x^2=3\\x^2+1=2x^2\left(x< 0\right)\\x^2-x-2=0\end{cases}}\)<=> \(\hept{\begin{cases}x^2=1\\\left(x+1\right)\left(x-2\right)=0\end{cases}< =>x=-1}\) (thỏa mãn điều kiện (1)

vậy x=-1 là nghiệm

Nguyen Phuc Duy
Xem chi tiết
Vũ Tiến Manh
13 tháng 10 2019 lúc 15:10

dk \(x+9\ge0;x\ge0;x+1>0< =>x\ge0;\)

\(\sqrt{x+9}-\sqrt{x}=\frac{2\sqrt{2}}{\sqrt{x+1}}< =>\frac{9}{\sqrt{x+9}+\sqrt{x}}=\frac{2\sqrt{2}}{\sqrt{x+1}}\)<=> \(9\sqrt{x+1}=2\sqrt{2}\left(\sqrt{x+9}+\sqrt{x}\right)< =>\)\(81\left(x+1\right)=16x+72+16\sqrt{x\left(x+9\right)}\)

<=> \(65x+9=16\sqrt{x\left(x+9\right)}\)<=> 4225x2+1170x+81= 256x2+144x <=> 3969x2+1026x+81=0 (vô nghiệm)

Nguyen Phuc Duy
Xem chi tiết
Vũ Tiến Manh
13 tháng 10 2019 lúc 14:53

dk \(\hept{\begin{cases}x\left(3x+1\right)\ge0\\x\left(x-1\right)\ge0\end{cases}< =>\orbr{\begin{cases}x\ge1\\x\le\frac{-1}{3}\end{cases}}}\)

vì x khác 0 nên chia cả 2 vế cho \(\sqrt{x}\)ta được \(\sqrt{3x+1}-\sqrt{x-1}=2\sqrt{x}< =>\)\(\sqrt{x-1}+2\sqrt{x}-\sqrt{3x+1}=0< =>\)\(\sqrt{x-1}+\frac{4x-\left(3x+1\right)}{2\sqrt{x}+\sqrt{3x+1}}=0\)\(\sqrt{x-1}+\frac{x-1}{2\sqrt{x}+\sqrt{3x+1}}=0\)\(< =>\sqrt{x-1}\left(1+\frac{\sqrt{x-1}}{2\sqrt{x}+\sqrt{3x+1}}\right)=0< =>\sqrt{x-1}=0\) (vì biểu thức trong ngoặc luôn \(\ge1\)) <=> x-1= 0 <=> x=1 (thỏa mãn điều kiện)

Le Minh Hieu
Xem chi tiết
King of Alien
Xem chi tiết
Đào Tùng Dương
Xem chi tiết
Akai Haruma
31 tháng 5 2019 lúc 13:24

Lời giải:
ĐKXĐ: \(x^2\geq 5\)

PT \(\Leftrightarrow (\sqrt{x^2+7}-4)-(\sqrt{x^2-5}-2)=x-3\)

\(\Leftrightarrow \frac{x^2+7-16}{\sqrt{x^2+7}+4}-\frac{x^2-5-4}{\sqrt{x^2-5}+2}=x-3\)

\(\Leftrightarrow \frac{(x-3)(x+3)}{\sqrt{x^2+7}+4}-\frac{(x-3)(x+3)}{\sqrt{x^2-5}+2}=x-3\)

\(\Leftrightarrow (x-3)\left[1+\frac{x+3}{\sqrt{x^2-5}+2}-\frac{x+3}{\sqrt{x^2+7}+4}\right]=0(1)\)

Với \(\forall x^2\geq 5\) thì:

\(\left\{\begin{matrix} x+3>0\\ \sqrt{x^2-5}+2< \sqrt{x^2+7}+4\end{matrix}\right.\Rightarrow \frac{x+3}{\sqrt{x^2-5}+2}>\frac{x+3}{\sqrt{x^2+7}+4}\)

\(\Rightarrow 1+\frac{x+3}{\sqrt{x^2-5}+2}-\frac{x+3}{\sqrt{x^2+7}+4}\neq 0(2)\)

Từ (1);(2) \(\Rightarrow x-3=0\Rightarrow x=3\) (thỏa mãn)

Vậy.......