tìm x biết:
d) x4_5x2+4=0
e) (3x_2)3_(x+1)3=(x+3)3
Tìm x biết.
a) 4x^2 - 49 = 0 b) x^2 + 36 = 12x
c) 1/16x^2 - x + 4 = 0 d) x^3 -3√3x2 + 9x - 3√3 = 0
e) (x - 2)^2 - 16 = 0 f) x^2 - 5x - 14 = 0
g) 8x(x - 3) + x - 3 = 0
a, 4x2 - 49 = 0
⇔⇔ (2x)2 - 72 = 0
⇔⇔ (2x - 7)(2x + 7) = 0
⇔{2x−7=02x+7=0⇔⎧⎪ ⎪⎨⎪ ⎪⎩x=72x=−72⇔{2x−7=02x+7=0⇔{x=72x=−72
b, x2 + 36 = 12x
⇔⇔ x2 + 36 - 12x = 0
⇔⇔ x2 - 2.x.6 + 62 = 0
⇔⇔ (x - 6)2 = 0
⇔⇔ x = 6
e, (x - 2)2 - 16 = 0
⇔⇔ (x - 2)2 - 42 = 0
⇔⇔ (x - 2 - 4)(x - 2 + 4) = 0
⇔⇔ (x - 6)(x + 2) = 0
⇔{x−6=0x+2=0⇔{x=6x=−2⇔{x−6=0x+2=0⇔{x=6x=−2
f, x2 - 5x -14 = 0
⇔⇔ x2 + 2x - 7x -14 = 0
⇔⇔ x(x + 2) - 7(x + 2) = 0
⇔⇔ (x + 2)(x - 7) = 0
⇔{x+2=0x−7=0⇔{x=−2x=7
a,\(4x^2-49=0\)
\(\Leftrightarrow\left(2x\right)^2-7^2=0\)
\(\Leftrightarrow\left(2x-7\right)\left(2x+7\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x-7=0\\2x+7=0\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=7\\2x=-7\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{7}{2}\\x=-\frac{7}{2}\end{cases}}}\)
b.\(x^2+36=12x\)
\(\Leftrightarrow x^2-12x+36=0\)
\(\Leftrightarrow\left(x-6\right)^2=0\)
\(\Leftrightarrow x-6=0\Leftrightarrow x=6\)
c.\(\frac{1}{16x^2}-x+4=0\)
\(\Leftrightarrow\left(\frac{1}{4x}\right)^2-2.\frac{1}{4x}.2+2^2=0\)
\(\Leftrightarrow\left(\frac{1}{4x}-2\right)^2=0\)
........
Tham khảo thanh này để soạn đề chính xác hơn nha :vvv
a) Ta có: \(M=\left(\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\right)\cdot\dfrac{x+3\sqrt{x}}{7-\sqrt{x}}\)
\(=\left(\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}-\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right)\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{7-\sqrt{x}}\)
\(=\dfrac{x-9-\left(x-2\sqrt{x}+\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{7-\sqrt{x}}\)
\(=\dfrac{x-9-x+\sqrt{x}+2}{\left(\sqrt{x}-2\right)}\cdot\dfrac{1}{-\left(\sqrt{x}-7\right)}\)
\(=\dfrac{\sqrt{x}-7}{\sqrt{x}-2}\cdot\dfrac{-1}{\sqrt{x}-7}\)
\(=\dfrac{-1}{\sqrt{x}-2}\)(1)
b) Ta có: \(x^2-4x=0\)
\(\Leftrightarrow x\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhận\right)\\x=4\left(loại\right)\end{matrix}\right.\)
Thay x=0 vào biểu thức (1), ta được:
\(M=\dfrac{-1}{\sqrt{0}-2}=\dfrac{-1}{-2}=\dfrac{1}{2}\)
Vậy: Khi \(x^2-4x=0\) thì \(M=\dfrac{1}{2}\)
Tìm x biết a) x(x-25)=0 b)2x(x-4)-x(2x-1)=-28 c)x^2 -5x=0 d)(x-2)^2-(x+1)(x+3)=-7 e)(3x+5).(4-3x)=0 f)x^2-1/4=0
a: \(x\in\left\{0;25\right\}\)
c: \(x\in\left\{0;5\right\}\)
Bài 3 : Tìm x Z biết.
a) x(x + 2) = 0 e) 7x – 13 = 3 2 .4
b) 5 – 2x = -7 f) 155 – 5(x + 3) = 80
c) (x + 3)(x – 4) = 0 g) 119 + 3 3 .x = 2 3 . 5 2
d) – 32 – 4(x – 5) = 0 h) 3(2x + 1) – 19 = 14
x(x+2)=0
suy ra x=0 hoặc x+2=0
5-2x=-7
2x=-7+5
2x=-(7-5)
2x=-2
x=-2:2
x=-1
Vậy x=-1
NHỚ TÍCH MK NHA
Tự học giúp bạn có được một gia tài
Jim Rohn – Triết lý cuộc đời
1) Tìm x biết :
a) 3/4-(1/2:x+1/2)=3/5
b)3x.(1/2x-1)=0
c)(4-x).(2x+3)=0
d)4/-3=-12/x
e)4x/-3=12/-x
a) \(\frac{3}{4}-\left(\frac{1}{2}:x+\frac{1}{2}\right)=\frac{3}{5}\)
\(\Leftrightarrow\frac{1}{2}:x+\frac{1}{2}=\frac{3}{4}-\frac{3}{5}\)
\(\Leftrightarrow\frac{1}{2}:x+\frac{1}{2}=\frac{15}{20}-\frac{12}{20}\)
\(\Leftrightarrow\frac{1}{2}:x+\frac{1}{2}=\frac{13}{20}\)
\(\Leftrightarrow\frac{1}{2}:x=\frac{13}{20}-\frac{1}{2}\)
\(\Leftrightarrow\frac{1}{2}:x=\frac{13}{20}-\frac{10}{20}\)
\(\Leftrightarrow\frac{1}{2}:x=\frac{3}{20}\)
\(\Leftrightarrow x=\frac{1}{2}:\frac{3}{20}\)
\(\Leftrightarrow x=\frac{1}{2}.\frac{20}{3}=\frac{10}{3}\)
Vậy: \(x=\frac{10}{3}\)
b) \(3x.\left(\frac{1}{2}.x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x=0\\\frac{1}{2}x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\\frac{1}{2}x=1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\x=1:\frac{1}{2}\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\x=2\end{cases}}}\)
Vậy: \(x\in\left\{0;2\right\}\)
c) \(\left(4-x\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}4-x=0\\2x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=4\\2x=3\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=4\\x=\frac{3}{2}\end{cases}}}\)
Vậy: \(x\in\left\{4;\frac{3}{2}\right\}\)
d) \(\frac{4}{-3}=\frac{-12}{x}\)
\(\Leftrightarrow4x=\left(-12\right).\left(-3\right)\)
\(\Leftrightarrow4x=36\)
\(\Leftrightarrow x=9\)
Vậy: \(x=9\)
e) \(\frac{4x}{-3}=\frac{12}{-x}\)
\(\Leftrightarrow4x.\left(-x\right)=12.\left(-3\right)\)
\(\Leftrightarrow-4x^2=-36\)
\(\Leftrightarrow x^2=9\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=-3\end{cases}}\)
Vậy: \(x\in\left\{3;-3\right\}\)
a,Ta có: 3/4-(1/2:x+1/2)=3/5
-(1/2:x+1/2)=3/5-3/4
-(1/2:x+1/2)=-3/20
1/2:x+1/2=3/20
1/2:x=3/20-1/2
1/2:x=-7/20
x=1/2:-7/20
x=-10/7
b,Ta có: 3x.(1/2x-1)=0
Với 3x=0 =>x=0
vói1/2x-1=0
a)\(\frac{3}{4}-\left(\frac{1}{2}:x+\frac{1}{2}\right)=\frac{3}{5}\)
\(\Leftrightarrow\frac{1}{2}:x+\frac{1}{2}=\frac{3}{20}\)
\(\Leftrightarrow\frac{1}{2}:x=\frac{-7}{20}\Leftrightarrow x=-\frac{10}{7}\)
b) \(3x\left(\frac{1}{2}x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x=0\\\frac{1}{2}x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\\frac{1}{2}x=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
Vậy x = 0 hoặc x = 2
c) \(\left(4-x\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}4-x=0\\2x+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=4\\2x=-3\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=4\\x=-\frac{3}{2}\end{cases}}\)
Vậy x = 4 hoặc x = -3/2
d) \(\frac{4}{-3}=-\frac{12}{x}\Leftrightarrow4x=36\Leftrightarrow x=9\)
e) \(\frac{4x}{-3}=\frac{12}{-x}\)
\(\Leftrightarrow4x\left(-x\right)=-36\)
\(\Leftrightarrow x\left(-x\right)=-9\)
\(\Leftrightarrow-x^2=-9\)
\(\Leftrightarrow-x^2=-3^2\Leftrightarrow-x=-3\Leftrightarrow x=3\)
Tìm x biết:
\(a,3\dfrac{1}{2}-\dfrac{1}{2}x=\dfrac{2}{3}\)
\(b,\dfrac{1}{3}+\dfrac{2}{3}:x=-7\)
\(c,\dfrac{1}{3}x+\dfrac{2}{5}\left(x-1\right)=0\)
\(d,\left(2x-3\right)\left(6-2x\right)=0\)
\(e,x:\dfrac{3}{4}+\dfrac{1}{4}=-\dfrac{2}{3}\)
\(f,\dfrac{-2}{3}-\dfrac{1}{3}\left(2x-5\right)=\dfrac{3}{2}\)
\(g,2\left|\dfrac{1}{2}x-\dfrac{1}{3}\right|-\dfrac{3}{2}=\dfrac{1}{4}\)
\(h,\dfrac{3}{4}-2.\left|2x-\dfrac{2}{3}\right|=2\)
\(i,\left(-0,6x-\dfrac{1}{2}\right).\dfrac{3}{4}-\left(-1\right)=\dfrac{1}{3}\)
\(j,\left(3x-1\right)\left(-\dfrac{1}{2}x+5\right)=0\)
\(k,\dfrac{1}{4}+\dfrac{1}{3}:\left(2x-1\right)=-5\)
\(l,\left(2x+\dfrac{3}{5}\right)^2-\dfrac{9}{25}=0\)
\(m,3\left(3x-\dfrac{1}{2}\right)^3+\dfrac{1}{9}=0\)
\(n,60\%x+\dfrac{2}{3}x=\dfrac{1}{3}.6\dfrac{1}{3}\)
\(p,-5\left(x+\dfrac{1}{5}\right)-\dfrac{1}{2}\left(x-\dfrac{2}{3}\right)=\dfrac{3}{2}x-\dfrac{5}{6}\)
\(q,3\left(x-\dfrac{1}{2}\right)-5\left(x+\dfrac{3}{5}\right)=-x+\dfrac{1}{5}\)
a: =>1/2x=7/2-2/3=21/6-4/6=17/6
=>x=17/3
b: =>2/3:x=-7-1/3=-22/3
=>x=2/3:(-22/3)=-1/11
c: =>1/3x+2/5x-2/5=0
=>11/15x=2/5
hay x=6/11
d: =>2x-3=0 hoặc 6-2x=0
=>x=3/2 hoặc x=3
Tìm x , biết :
a. \(\left(x-2\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2=15\)
b. \(2x^3-50x=0\)
c.\(5x^2-4\left(x^2-2x+1\right)-5=0\)
d. \(x^3-x=0\)
e. \(27x^3-27x^2+9x-1=1\)
a) Ta có: \(\left(x-2\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2=15\)
\(\Leftrightarrow x^3-6x^2+12x-8-x^3+27+6\left(x^2+2x+1\right)=15\)
\(\Leftrightarrow-6x^2+12x+19+6x^2+12x+6=15\)
\(\Leftrightarrow24x+25=15\)
\(\Leftrightarrow24x=-10\)
hay \(x=-\dfrac{5}{12}\)
b) Ta có: \(2x^3-50x=0\)
\(\Leftrightarrow2x\left(x-5\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\\x=-5\end{matrix}\right.\)
c) Ta có: \(5x^2-4\left(x^2-2x+1\right)-5=0\)
\(\Leftrightarrow5x^2-4x^2+8x-4-5=0\)
\(\Leftrightarrow x^2+8x-9=0\)
\(\Leftrightarrow\left(x+9\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-9\\x=1\end{matrix}\right.\)
d) Ta có: \(x^3-x=0\)
\(\Leftrightarrow x\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)
e) Ta có: \(27x^3-27x^2+9x-1=1\)
\(\Leftrightarrow\left(3x\right)^3-3\cdot\left(3x\right)^2\cdot1+3\cdot3x\cdot1^2-1^3=1\)
\(\Leftrightarrow\left(3x-1\right)^3=1\)
\(\Leftrightarrow3x-1=1\)
\(\Leftrightarrow3x=2\)
hay \(x=\dfrac{2}{3}\)
1 tìm x biết ;
a, 0-|x + 1| = 5
b, 2 - | \(\frac{3}{4}\)- x | = \(\frac{7}{12}\)
c, 2 | \(\frac{1}{2}\)x - \(\frac{1}{3}\)| - \(\frac{3}{2}\)= \(\frac{1}{4}\)
d, | x - \(\frac{1}{3}\)| = \(\frac{5}{6}\)
e, \(\frac{3}{4}\)- 2 | 2x - \(\frac{2}{3}\)| = 2
f, \(\frac{2x-1}{2}\)= \(\frac{5+3x}{3}\)
d,
\(|x-\frac{1}{3}|=\frac{5}{6}\Rightarrow \left[\begin{matrix} x-\frac{1}{3}=\frac{5}{6}\\ x-\frac{1}{3}=-\frac{5}{6}\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=\frac{7}{6}\\ x=\frac{-1}{2}\end{matrix}\right.\)
e,
\(\frac{3}{4}-2|2x-\frac{2}{3}|=2\)
\(\Leftrightarrow 2|2x-\frac{2}{3}|=\frac{3}{4}-2=\frac{-5}{4}\)
\(\Leftrightarrow |2x-\frac{2}{3}|=-\frac{5}{8}<0\) (vô lý vì trị tuyệt đối của 1 số luôn không âm)
Vậy không tồn tại $x$ thỏa mãn đề bài.
f,
\(\frac{2x-1}{2}=\frac{5+3x}{3}\Leftrightarrow 3(2x-1)=2(5+3x)\)
\(\Leftrightarrow 6x-3=10+6x\)
\(\Leftrightarrow 13=0\) (vô lý)
Vậy không tồn tại $x$ thỏa mãn đề bài.
a,
$0-|x+1|=5$
$|x+1|=0-5=-5<0$ (vô lý do trị tuyệt đối của một số luôn không âm)
Do đó không tồn tại $x$ thỏa mãn điều kiện đề.
b,
\(2-|\frac{3}{4}-x|=\frac{7}{12}\)
\(|\frac{3}{4}-x|=2-\frac{7}{12}=\frac{17}{12}\)
\(\Rightarrow \left[\begin{matrix} \frac{3}{4}-x=\frac{17}{12}\\ \frac{3}{4}-x=\frac{-17}{12}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{-2}{3}\\ x=\frac{13}{6}\end{matrix}\right.\)
c,
\(2|\frac{1}{2}x-\frac{1}{3}|-\frac{3}{2}=\frac{1}{4}\)
\(2|\frac{1}{2}x-\frac{1}{3}|=\frac{7}{4}\)
\(|\frac{1}{2}x-\frac{1}{3}|=\frac{7}{8}\)
\(\Rightarrow \left[\begin{matrix} \frac{1}{2}x-\frac{1}{3}=\frac{7}{8}\\ \frac{1}{2}x-\frac{1}{3}=-\frac{7}{8}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{29}{12}\\ x=\frac{-13}{12}\end{matrix}\right.\)
1 tìm x biết ;
a, 0-|x + 1| = 5
b, 2 - | \(\frac{3}{4}\)- x | = \(\frac{7}{12}\)
c, 2 | \(\frac{1}{2}\)x - \(\frac{1}{3}\)| - \(\frac{3}{2}\)= \(\frac{1}{4}\)
d, | x - \(\frac{1}{3}\)| = \(\frac{5}{6}\)
e, \(\frac{3}{4}\)- 2 | 2x - \(\frac{2}{3}\)| = 2
f, \(\frac{2x-1}{2}\)= \(\frac{5+3x}{3}\)