Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Thị Ngọc Mai
Xem chi tiết
Nguyễn Việt Lâm
19 tháng 11 2018 lúc 17:19

\(4\left(m+n\right)^2-mn⋮15^2\Rightarrow4\left(4\left(m+n\right)^2-mn\right)⋮15^2\)

\(\Rightarrow16\left(m+n\right)^2-4mn⋮15^2\Rightarrow15\left(m+n\right)^2+\left(m-n\right)^2⋮15^2\Rightarrow15\left(m+n\right)^2+\left(m-n\right)^2⋮15\)

\(15\left(m+n\right)^2⋮15\Rightarrow\left(m-n\right)^2⋮15\Rightarrow\left\{{}\begin{matrix}\left(m-n\right)^2⋮3\\\left(m-n\right)^2⋮5\end{matrix}\right.\)

Do 3 và 5 là số nguyên tố \(\Rightarrow\left\{{}\begin{matrix}m-n⋮3\\m-n⋮5\end{matrix}\right.\) \(\Rightarrow m-n⋮15\Rightarrow\left(m-n\right)^2⋮15^2\)

\(\Rightarrow15\left(m+n\right)^2⋮15^2\Rightarrow\left(m+n\right)^2⋮15\Rightarrow\left\{{}\begin{matrix}\left(m+n\right)^2⋮3\\\left(m+n\right)^2⋮5\end{matrix}\right.\)

Mà 3; 5 là số nguyên tố \(\Rightarrow\left\{{}\begin{matrix}m+n⋮3\\m+n⋮5\end{matrix}\right.\) \(\Rightarrow m+n⋮15\Rightarrow\left(m+n\right)^2⋮15^2\)

Áp dụng kết quả này vào điều kiện ban đầu: \(4\left(m+n\right)^2-mn⋮15^2\) , mà ta \(\left(m+n\right)^2⋮15^2\) \(\Rightarrow mn⋮15^2\)

Hoàng Thị Ngọc Mai
19 tháng 11 2018 lúc 16:49

Akai Haruma

Cô giúp em với ạ!!!!

Nghĩa Nguyễn
Xem chi tiết
alibaba nguyễn
28 tháng 11 2016 lúc 8:08

Do \(5\left(a+b\right)^2+ab\)chia hết cho 441 = 212 nên

\(4\left(5\left(a+b\right)^2+ab\right)=20\left(a+b\right)^2+4ab\)chia hết cho 212

Ta lại có

\(20\left(a+b\right)^2+4ab=20\left(a+b\right)^2+\left(a+b\right)^2-\left(a-b\right)^2\)

\(=21\left(a+b\right)^2-\left(a-b\right)^2\)

Vì 21(a+b)2 chia hết cho 21 nên (a - b)2 chia hết cho 21

Ta thấy rằng 21 = 3.7 (3,7 là hai số nguyên tố)

Nên (a - b)2 chia hết cho 3 và 7

=> (a - b) chia hết cho 3 và 7 (vì 3, 7 là số nguyên tố)

=> (a - b) chia hết cho 21

=> (a - b)2 chia hết cho 212 

Kết hợp với \(21\left(a+b\right)^2-\left(a-b\right)^2\)chia hết cho 212

=> 21(a + b)2 chia hết cho 212

=> (a + b) chia hết cho 21

Chứng minh tương tự ta se suy ra được (a + b)2 chia hết cho 212

=> 5(a + b)2 chia hết cho 212

=> ab chia hết cho 212 = 441

coolkid
Xem chi tiết
X1
15 tháng 11 2019 lúc 19:47

 \(A\left(x\right)=Q\left(x\right)\left(x-1\right)+4\)(1)

 \(A\left(x\right)=P\left(x\right)\left(x-3\right)+14\)(2)

\(A\left(x\right)=\left(x-1\right)\left(x-3\right)T\left(x\right)+F\left(x\right)\)(3)

Đặt : \(F\left(x\right)=ax+b\)

Với x=1  từ (1) và (3) 

\(\hept{\begin{cases}A\left(1\right)=4\\A\left(1\right)=a+b\end{cases}}\)

\(\Rightarrow a+b=4\)(*)

Với x=3 từ (3) và (2)

\(\hept{\begin{cases}A\left(3\right)=14\\A\left(3\right)=3a+b\end{cases}}\)

\(\Rightarrow3a+b=14\)(**)

Từ (*) và (**)

\(\Rightarrow2a=10\Rightarrow a=5\Rightarrow b=-1\)

\(\Rightarrow F\left(x\right)=ax+b=5x-1\)

T lm r, ko bt có đúng ko:))

Khách vãng lai đã xóa
Nguyễn Văn Huy
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 6 2022 lúc 13:41

\(A=\dfrac{m^2+5m+n^2+5n+2mn-6}{m^2+6m+n^2+6n+2mn}\)

\(=\dfrac{\left(m+n\right)^2+5\left(m+n\right)-6}{\left(m+n\right)^2+6\left(m+n\right)}\)

\(=\dfrac{2013^2+5\cdot2013-6}{2013^2+6\cdot2013}=\dfrac{2012}{2013}\)

Nguyễn Cửu Nhật Quang
Xem chi tiết
Nguyễn Thu Hà
Xem chi tiết
alibaba nguyễn
3 tháng 11 2016 lúc 20:15

a/ Để hàm số này là hàm bậc nhất thì

\(\hept{\begin{cases}\left(3n-1\right)\left(2m+3\right)=0\\4m+3\ne0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}n=\frac{1}{3}\\m=\frac{-3}{2}\end{cases}}\)

Các câu còn lại làm tương tự nhé bạn

phamtruongtu
3 tháng 11 2016 lúc 20:11

NHAMMATTAOCUNGLAMDUOC

alibaba nguyễn
3 tháng 11 2016 lúc 20:18

\(\orbr{\begin{cases}n=\frac{1}{3}va\:\:m\ne\frac{-3}{4}\\m=-\frac{2}{3}\end{cases}}\)

Mình nhầm sorry nhé

Lê Phương Thảo
Xem chi tiết
Xem chi tiết
o0o nhật kiếm o0o
11 tháng 3 2020 lúc 14:59

Ta có : 

(n,6) = 1 => n phải là số lẻ ( nếu n chẵn thì ( n,6) = 2 )

=> n - 1 và n + 1 là 2 số chẵn liên tiếp 

=> ( n - 1 )(n + 1 ) chia hết cho 8 

(n,6) = 1 => n không chia hết cho 3

=> n sẽ có dạng là 3k +1 ; 3k + 2 ( k thuộc Z )

Với n = 3k +1 => n -1 = 3k + 1 -1 = 3k chia hết cho 3  => (n - 1)(n+1) chia hết cho 3 

Với n = 3k + 2 => n + 1 = 3k + 2 +1 = 3k+ 3 chia hết cho 3 => ( n -1 )(n +1) chia hết cho 3 

Với cả 2TH => ( n-1)(n+1) chia hết cho 3 

Mà (8,3)= 1 => (n-1)(n+1) chia hết cho 24 ( đpcm)

Khách vãng lai đã xóa
Lê Thị Nhung
11 tháng 3 2020 lúc 15:30

ta có \(\left(n-1\right).n.\left(n+1\right)⋮3\) mà UCLN (3,n) = 1

nên \(\left(n-1\right).\left(n+1\right)⋮3\) (1)

n là số nguyên tố lớn hơn 3 nên n là số lẻ, p - 1 và p + 1 là hai số chẵn liên tiếp

Trong số hai số chẵn liên tiếp , có một số là bội của 4 nên tích chúng chia hết cho 8  (2)

Từ (1) và (2) suy ra \(\left(n-1\right).\left(n+1\right)⋮3và8\)

Mà UCLN (3,8) = 1

nên \(\left(n-1\right).\left(n+1\right)⋮24\)

Khách vãng lai đã xóa
ILoveMath
Xem chi tiết