2x/7=y/3;x/2=2z/5 và x+y-z= 34
Đạo hàm của hàm số \(y=\left(-x^2+3x+7\right)^7\) là:
A. \(y'=7\left(-2x+3\right)\left(-x^2+3x+7\right)^6\)
B. \(y'=7\left(-x^2+3x+7\right)^6\)
C. \(y'=\left(-2x+3\right)\left(-x^2+3x+7\right)^6\)
D. \(y'=7\left(-2x+3\right)\left(-x^2+3x+7\right)^6\)
\(y'=7\left(-x^2+3x+7\right)^6.\left(-x^2+3x+7\right)'\)
\(=7\left(-2x+3\right)\left(-x^2+3x+7\right)^6\)
Tìm x,y,z biết: x-3/0,2=2x-1/-0,5 3x-1/2x+3=3x+2/2x-1
4x-1/4x+5=-x-2/-x+7
x/y=5/7 và 2x-y=15
x/3=y/5=7/7 và x +y-27=36
mik đag cần liền, giải hộ mik với
đề ở câu đầu:
x-3/0,2=2x-1/-0,5
3x-1/2x+3=3x+2/2x-1
a: =>-0,5x+1,5=0,4x-0,2
=>-0,9x=-1,7
=>x=17/9
3x-1/2x+3=3x+2/2x-1
=>6x^2-3x-2x+1=6x^2+4x+9x+6
=>-5x+1=13x+6
=>-8x=5
=>x=-5/8
b: \(\Leftrightarrow\left(4x-1\right)\left(-x+7\right)=\left(4x+5\right)\left(-x-2\right)\)
=>\(-4x^2+28x+x-7=-4x^2-8x-5x-10\)
=>29x-7=-13x-10
=>42x=-3
=>x=-1/14
c: =>7x=5y và 2x-y=15
=>7x-5y=0 và 2x-y=15
=>x=25; y=35
Bài 6:Chứng minh rằng các biểu thức sau ko phụ thuộc vào x
1)(3x-5)(2x+11)-(2x+3)(3x+7)
2)(x-5)(2x+3)-2x(x-3)+x+7
3)(2x+3)(4x^2-6x+9)-2(4^3-1)
Bài 7:tính
B=2(x^3+y^3)-3(x^2+y^2)vói x+y=1
TL:
\(a,\left(3x-5\right)\left(2x+11\right)-\left(2x+3\right)\left(3x+7\right)\)
\(=6x^2+23x-55-6x^2-23x-21\)
\(=-76\)
Mấy câu kia tương tự !
lm đC câu nào hay câu đó ạ;-;
Bài 3: Rút gọn biểu thức sau:
4) (3x + y)² + (x−y)²
7) (x-4y)² + (x+4y)
10) (2x+7)² + (−2x-3)²
12) -(x+1)²-(x-1)²
5) -(x+5)²-(x-3)²
8) -(-2x+3)²-(5x-3)²
11)-(2x - y)²-(x+3y)²
\(4.\left(3x+y\right)^2+\left(x+y\right)^2\)
\(=3x^2+6xy+y^2+x^2-2xy+y^2\)
\(=9x^2+6xy+y^2+x^2-2xy+y^2\)
\(=10x^2-4xy+2y^2\)
\(7.\left(x-4\right)^2+\left(x+4y\right)\)
\(=x^2-8x+16+x+4y\)
\(=x^2-7x+16+4y\)
\(10.\left(2x+7\right)^2+\left(-2x-3\right)^2\)
\(=4x^2+28x+49+4x^2+12x+9\)
\(=8x^2+40x+58\)
\(12.-\left(x+1\right)^2-\left(x-1\right)^2\)
\(=-\left(x^2+2x+1\right)-\left(x^2-2x+1\right)\)
\(=-x^2-2x-1+x^2+2x-1\)
\(=4x\)
\(5.-\left(x+5\right)^2-\left(x-3\right)^2\)
\(=-\left(x^2+10x+25\right)-\left(x^2-6x+9\right)\)
\(=-x^2-10-25+x^2+6x-9\)
\(=-16x-16\)
\(8.-\left(-2x+3\right)^2-\left(5x-3\right)^2\)
\(=4x^2+12x+9-25x^2+30x-9\)
\(=-21x^2+42x\)
\(11.-\left(2x-y\right)^2-\left(x+3y\right)^2\)
\(=-4x^2+4xy-y^2-\left(x^2+6xy+9y^2\right)\)
\(=-4x^2+4xy-y^2-x^2-6xy-9y^2\)
\(=-5x^2-2xy-10y^2\)
4: =9x^2+6xy+y^2+x^2-2xy+y^2
=10x^2+4xy+2y^2
5: =-x^2-10x-25-x^2+6x-9
=-4x-34
7; \(=x^2-8xy+16y^2+x+4y\)
10: \(=4x^2+28x+49+4x^2+12x+9\)
=8x^2+40x+58
11: =-4x^2+4xy-y^2-x^2-6xy-9y^2
=-5x^2-2xy-10y^2
Giải phương trình 1, \(x^2+9x+7=\left(2x+1\right)\sqrt{2x^2+4x+5}\)
2, GPT \(\left(2x+7\right)\sqrt{2x+7}=x^2+9x+7\)
3. GHPT \(\left\{{}\begin{matrix}x^2-2y-1=2\sqrt{5y+8}+\sqrt{7x-1}\\\left(x-y\right)\left(x^2+xy+y^2+3\right)=3\left(x^2+y^2\right)+2\end{matrix}\right.\)
1.
\(\Leftrightarrow\left(2x+1\right)\sqrt{2x^2+4x+5}-\left(2x+1\right)\left(x+3\right)+x^2-2x-4=0\)
\(\Leftrightarrow\left(2x+1\right)\left(\sqrt{2x^2+4x+5}-\left(x+3\right)\right)+x^2-2x-4=0\)
\(\Leftrightarrow\dfrac{\left(2x+1\right)\left(x^2-2x-4\right)}{\sqrt{2x^2+4x+5}+x+3}+x^2-2x-4=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x-4=0\\\dfrac{2x+1}{\sqrt{2x^2+4x+5}+x+3}+1=0\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow2x+1+\sqrt{2x^2+4x+5}+x+3=0\)
\(\Leftrightarrow\sqrt{2x^2+4x+5}=-3x-4\) \(\left(x\le-\dfrac{4}{3}\right)\)
\(\Leftrightarrow2x^2+4x+5=9x^2+24x+16\)
\(\Leftrightarrow7x^2+20x+11=0\)
2.
ĐKXĐ: ...
\(\Leftrightarrow2x\sqrt{2x+7}+7\sqrt{2x+7}=x^2+2x+7+7x\)
\(\Leftrightarrow\left(x^2-2x\sqrt{2x+7}+2x+7\right)+7\left(x-\sqrt{2x+7}\right)=0\)
\(\Leftrightarrow\left(x-\sqrt{2x+7}\right)^2+7\left(x-\sqrt{2x+7}\right)=0\)
\(\Leftrightarrow\left(x-\sqrt{2x+7}\right)\left(x+7-\sqrt{2x+7}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{2x+7}\\x+7=\sqrt{2x+7}\end{matrix}\right.\)
\(\Leftrightarrow...\)
3.
ĐKXĐ: ...
Từ pt dưới:
\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2\right)+3x-3y=3x^2+3y^2+1+1\)
\(\Leftrightarrow x^3-y^3+3x-3y=3x^2+3y^2+1+1\)
\(\Leftrightarrow x^3-3x^2+3x-1=y^3+3y^2+3y+1\)
\(\Leftrightarrow\left(x-1\right)^3=\left(y+1\right)^3\)
\(\Leftrightarrow y=x-2\)
Thế vào pt trên:
\(x^2-2x+3=2\sqrt{5x-2}+\sqrt{7x-1}\)
\(\Leftrightarrow x^2-5x+2+2\left(x-\sqrt{5x-2}\right)+\left(x+1-\sqrt{7x-1}\right)=0\)
\(\Leftrightarrow x^2-5x+2+\dfrac{2\left(x^2-5x+2\right)}{x+\sqrt{5x-2}}+\dfrac{x^2-5x+2}{x+1+\sqrt{7x-1}}=0\)
\(\Leftrightarrow x^2-5x+2=0\)
\(\left\{{}\begin{matrix}xy-y^2+2y-x-1=\sqrt{y-1}-\sqrt{x}\\3\sqrt{6-y}+3\sqrt{2x+3y-7}=2x+7\end{matrix}\right.\)
ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\y\ge1\end{matrix}\right.\)
\(xy-y^2+2y-x-1=\sqrt{y-1}-\sqrt{x}\)
\(\Leftrightarrow x\left(y-1\right)-\left(y-1\right)^2+\sqrt{x}-\sqrt{y-1}=0\)
\(\Leftrightarrow\left(y-1\right)\left(x-y+1\right)+\dfrac{x-y+1}{\sqrt{x}+\sqrt{y-1}}=0\)
\(\Leftrightarrow\left(x-y+1\right)\left(y-1+\dfrac{1}{\sqrt{x}+\sqrt{y-1}}\right)=0\)
\(\Leftrightarrow x-y+1=0\)
\(\Rightarrow y=x+1\)
Thay xuống pt dưới:
\(3\sqrt{5-x}+3\sqrt{5x-4}=2x+7\)
\(\Leftrightarrow3\left(x-\sqrt{5x-4}\right)+\left(7-x-3\sqrt{5-x}\right)=0\)
\(\Leftrightarrow\dfrac{3\left(x^2-5x+4\right)}{x+\sqrt{5x-4}}+\dfrac{x^2-5x+4}{7-x+3\sqrt{5-x}}=0\)
\(\Leftrightarrow...\)
Giải hệ phươn trình sau
\(\left\{{}\begin{matrix}\dfrac{3}{2x-7}+\dfrac{4}{y+6}=7\\\dfrac{2}{2x-7}-\dfrac{3}{y+6}=-1\end{matrix}\right.\)
ĐKXĐ: x<>7/2 và y<>-6
\(\left\{{}\begin{matrix}\dfrac{3}{2x-7}+\dfrac{4}{y+6}=7\\\dfrac{2}{2x-7}-\dfrac{3}{y+6}=-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{9}{2x-7}+\dfrac{12}{y+6}=21\\\dfrac{8}{2x-7}-\dfrac{12}{y+6}=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{17}{2x-7}=17\\\dfrac{2}{2x-7}-\dfrac{3}{y+6}=-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2x-7=1\\\dfrac{3}{y+6}=2+1=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=8\\y+6=1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=4\\y=-5\end{matrix}\right.\left(nhận\right)\)
Giải hệ phương trình sau
\(\left\{{}\begin{matrix}\dfrac{3}{2x-7}+\dfrac{4}{y+6}=7\\\dfrac{2}{2x-7}-\dfrac{3}{y+6}=-1\end{matrix}\right.\)
đk x khác 7/2 ; y khác -6
Đặt \(\dfrac{1}{2x-7}=t;\dfrac{1}{y+6}=u\)
\(\left\{{}\begin{matrix}3t+4u=7\\2t-3u=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6t+8u=14\\6t-9u=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}u=1\\t=\dfrac{-1+3u}{2}=1\end{matrix}\right.\)
Theo cách đặt \(\left\{{}\begin{matrix}2x-7=1\\y+6=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=-5\end{matrix}\right.\left(tm\right)\)
Làm hộ mình bài này nha mình cần ngay
Tìm x , y , z , biết:
a, x/3 = y/7 và x - y = 81
b. x/7 = y/11 và 2x - 3y =133
c. x/2 = y/3 = z/4 biết 2x - y + z = 10
d. x/3 = y/4 ;y/5 = z/7 và 2x + 3y = 36
làm giúp mk bài này nhá 0+1+2+...+2017 có bao nhiêu số hạng
Giải hệ\(\left\{{}\begin{matrix}xy-y^2+2y-x-1=\sqrt{y-1}-\sqrt{x}\\3\sqrt{6-y}+3\sqrt{2x+3y-7}=2x+7\end{matrix}\right.\)
Giải hệ phương trình: \(\left\{\begin{matrix} xy-y^2-x+2y=\sqrt{y-1}+1-\sqrt{x} - Hy Vũ