Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
thảo nguyễn thanh
Xem chi tiết
Minh Tuấn Phạm
Xem chi tiết
Trần Đức Mạnh
Xem chi tiết
Hoang Hung Quan
30 tháng 3 2017 lúc 19:03

a) Ta có:

\(8^9+7^9+6^9+...+1^9\)

\(=\left(8^3+7^3+6^3+...+1^3\right)^2\)

\(=\left(\left(8+7+6+...+2+1\right)^2\right)^2\)

\(=\left(8+7+6+...+2+1\right)^4\)

\(=36^4=9^4.4^4\)

\(9^{10}=9^4.9^6\)

\(\Rightarrow9^4.9^6>9^4.4^4\)

Vậy \(9^{10}>8^9+7^9+6^9+...+1^9\)

b) \(45=5.9\)

Ta có:

\(\left\{{}\begin{matrix}36⋮9\\9⋮9\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}36^{36}⋮9\\9^{10}⋮9\end{matrix}\right.\)\(\Rightarrow\left(36^{36}-9^{10}\right)⋮9\)

Lại có:

\(36\div5\)\(1\)

\(9\div5\)\(1\)

\(\Rightarrow\left(36^{36}-9^{10}\right)⋮5\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\)\(\left(9;5\right)=1\)

\(\Rightarrow\left(36^{36}-9^{10}\right)⋮45\) (Đpcm)

Trịnh Thảo Chuột
Xem chi tiết
Hoang Hung Quan
10 tháng 2 2017 lúc 19:23

Ta có:

\(8^9+7^9+6^9+5^9+...+2^9+1^9\)

\(=\left(8^3+7^3+6^3+5^3+...+2^3+1^3\right)^2\)

\(=\left(\left(8+7+6+5+...+2+1\right)^2\right)^2\)

\(=\left(8+7+6+5+...+2+1\right)^4\)

\(=36^4\)

\(=9^4.4^4\)

\(9^{10}=9^4.9^6\)

\(9^4.9^6>9^4.4^4\)

\(\Rightarrow9^{10}>8^9+7^9+6^9+5^9+...+2^9+1^9\)

Luger Girl
Xem chi tiết
Ngô Tấn Đạt
25 tháng 12 2017 lúc 19:30

Đặt \(A=36^{36}-9^{10}\)

\(\left\{{}\begin{matrix}36^{36}⋮9\\9^{10}⋮9\end{matrix}\right.\Rightarrow A=36^{36}-9^{10}⋮9\)

\(36\equiv1\left(mod5\right)\\ \Rightarrow36^{36}\equiv1\left(mod5\right)\\ 9\equiv-1\left(mod5\right)\\ \Rightarrow9^{10}\equiv1\left(mod5\right)\\ \Rightarrow A=36^{36}-9^{10}\equiv0\left(mod5\right)\\ \Rightarrow A⋮5\)

(5;9)=1 => A chia hết 45

trần văn đức
Xem chi tiết
%Hz@
1 tháng 1 2020 lúc 20:08

\(36^{36}-9^{10}⋮9\) vì các số hạng đều chia hết cho 9 .

Mặt khác :

36 có tận cùng là 6

\(9^{10}=\left(9^2\right)^5=81^5\) có tận cùng là 1

\(36^{36}-9^{10}\) có tận cùng là 6 - 1 = 5

\(36^{36}-9^{10}\) chia hết cho 5

Mà (5 ; 9 ) = 1

 \(36^{36}-9^{10}⋮45\)

Khách vãng lai đã xóa
Nguyen Xuan Thinh
Xem chi tiết
nguyễn thị mi
Xem chi tiết
Isolde Moria
18 tháng 9 2016 lúc 10:24

Ta có :

\(36^{36}-9^{10}⋮9\) vì các số hạng đều chia hết cho 9 .

Mặt khác :

\(36^{36}\) có tận cùng là 6

\(9^{10}=\left(9^2\right)^5=81^5\) có tận cùng là 1

\(\Rightarrow36^{36}-9^{10}\) có tận cùng là 6 - 1 = 5

\(\Rightarrow36^{36}-9^{10}\) chia hết cho 5

Mà (5 ; 9 ) = 1

\(\Rightarrow36^{36}-9^{10}\) chia hết cho 45

Nguyen Thi Mai
18 tháng 9 2016 lúc 10:23

36^36-9^10

= (45-9)^36-9^10 
= 45m+9^36-9^10 
= 45m +9^10*(9^26-1) 
= 45m +9^10*(81^13-1) 
= 45m+9^10* 10k {do 81^13 tân cùng là 1=>( 81^13-1) chia hết cho 10} 
= 45m+90n =45(m+2n) chia hết cho 45

Kẹo dẻo
18 tháng 9 2016 lúc 12:31

Vì 45=9x5

=> 36\(^{36}\) -9\(^{10}\) chia hết cho 9 (1) (vì 36^36 và 9^10 đều chia hết cho 9)

36\(^{36}\) tận cùng là 6 (số tận cùng bằng 6 nâng lên luỹ thừa n (n nguyên dương) thì kết quả cũng tận cùng là 6)

9\(^{10}\)tận cùng là 1 (9 luỹ thừa m với m chẵn luôn tận cùng là 1)

=> 36\(^{36}\) -­9^10 tận cùng là 5 và do đó nó chia hết cho 5 (2)

Vì 5 và 9 là 2 số nguyên tố cùng nhau nên từ (1),(2) => 36\(^{36}\) ­ 9\(^{10}\) chia hết cho 45.

Đỗ Quang Thanh
Xem chi tiết
Akai Haruma
29 tháng 6 2024 lúc 22:56

Lời giải:

$A=36^{36}-9^{10}=4^{36}.9^{36}-9^{10}$

$=9^{10}(4^{36}.9^{26}-1)$

Hiển nhiên $9^{10}\vdots 9\Rightarrow A\vdots 9$

Lại có:

$4\equiv -1\pmod 5; 9\equiv -1\pmod 5$

$\Rightarrow 4^{36}.9^{26}\equiv (-1)^{36}(-1)^{26}\equiv 1\pmod 5$

$\Rightarrow 4^{36}.9^{26}-1\vdots 5$

$\Rightarrow A\vdots 5$

Vậy $A\vdots 5; A\vdots 9\Rightarrow A\vdots 36$