Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Anh Phạm Phương
Xem chi tiết
Anh Phạm Phương
Xem chi tiết
tthnew
29 tháng 9 2019 lúc 10:05

c và d ở đâu vại:>

\(a^4+b^4\ge ab\left(a^2+b^2\right)\Leftrightarrow\left(a^4-a^3b\right)-\left(ab^3-b^4\right)\ge0\)

\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\Leftrightarrow\left(a-b\right)\left(a^3-b^3\right)\ge0\)

\(\Leftrightarrow\left(a^2+ab+b^2\right)\left(a-b\right)^2\ge0\)(đúng)

Đẳng thức xảy ra khi a= b

Ta có đpcm

Dương Thị Thu Hiền
Xem chi tiết
Nguyễn Mạnh Khang
Xem chi tiết
Nguyễn Thị Lan Anh
Xem chi tiết
Ha Hoang Vu Nhat
27 tháng 4 2017 lúc 20:57

Bạn hỏi câu này có lẽ bạn chưa biết BĐT côsi, mk sẽ trình bày từ bước chứng minh BĐT

Ta có: \(\left(m-n\right)^2\ge0\)

<=> \(m^2-2m.n+n^2\ge0\)

<=> \(m^2+2m.n+n^2-4m.n\ge0\)

<=> \(\left(m+n\right)^2\ge4m.n\)

=> \(m+n\ge2\sqrt{m.n}\) ( BĐT côsi)

a, Áp dụng BĐT côsi ta có:

\(\dfrac{1}{x}+x\ge2\sqrt{\dfrac{1}{x}.x}=2\)

vậy \(\dfrac{1}{x}+x\ge2\) (x>0)

b, Áp dụng BĐT côsi ta có:

\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{a}{b}.\dfrac{b}{a}}=2\)

vậy \(\dfrac{a}{b}+\dfrac{b}{a}\ge2\) với a, b >0

-----------Chúc bạn học tốt hehe-------------

hội những người háu ăn
Xem chi tiết
Cố Tử Thần
17 tháng 4 2019 lúc 12:36

trả lời

dùng bất đẳng thức cosi cho 2 số ko âm

sử dụng cộng mỗi cặp trên

đc 3 cặp

cộng lại là ra

Aug.21
17 tháng 4 2019 lúc 12:36

ta có : \(\frac{ab}{c}+\frac{ca}{b}\ge2a;\frac{bc}{a}+\frac{ca}{b}\ge2c\)

Do đó : \(\frac{ab}{c}+\frac{bc}{a}+\frac{ab}{c}+\frac{ca}{b}+\frac{bc}{a}+\frac{ca}{b}\ge2b+2a+2c\)

\(\Leftrightarrow\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\ge a+b+c\)

Ngọc Lê
Xem chi tiết
Akai Haruma
11 tháng 9 2018 lúc 23:10

Bài 1:

Chiều thuận:\(x^2+y^2\vdots 3\Rightarrow x\vdots 3; y\vdots 3\)

Giả sử cả \(x\not\vdots 3, y\not\vdots 3\). Ta biết rằng một số chính phương khi chia 3 thì dư $0$ hoặc $1$.

Do đó nếu \(x\not\vdots 3, y\not\vdots 3\Rightarrow x^2\equiv 1\pmod 3; y^2\equiv 1\pmod 3\)

\(\Rightarrow x^2+y^2\equiv 2\pmod 3\) (trái với giả thiết )

Suy ra ít nhất một trong 2 số $x,y$ chia hết cho $3$

Giả sử $x\vdots 3$ \(\Rightarrow x^2\vdots 3\). Mà \(x^2+y^2\vdots 3\Rightarrow y^2\vdots 3\Rightarrow y\vdots 3\)

Vậy \(x^2+y^2\vdots 3\Rightarrow x,y\vdots 3\)

Chiều đảo:

Ta thấy với \(x\vdots 3, y\vdots 3\Rightarrow x^2\vdots 3; y^2\vdots 3\Rightarrow x^2+y^2\vdots 3\) (đpcm)

Vậy ta có đpcm.

Akai Haruma
11 tháng 9 2018 lúc 23:27

Bài 2: > chứ không \(\geq \) nhé, vì khi \(a=b=c=\frac{1}{2}\) thì cả 3 BĐT đều đúng.

Phản chứng, giả sử cả 3 BĐT đều đúng

\(\Rightarrow \left\{\begin{matrix} a(1-b)> \frac{1}{4}\\ b(1-c)> \frac{1}{4}\\ c(1-a)>\frac{1}{4}\end{matrix}\right.\)

\(\Rightarrow a(1-a)b(1-b)c(1-c)> \frac{1}{4^3}(*)\)

Theo BĐT AM-GM thì:

\(a(1-a)\leq \left(\frac{a+1-a}{2}\right)^2=\frac{1}{4}\)

\(b(1-b)\leq \left(\frac{b+1-b}{2}\right)^2=\frac{1}{4}\)

\(c(1-c)\leq \left(\frac{c+1-c}{2}\right)^2=\frac{1}{4}\)

\(\Rightarrow abc(1-a)(1-b)(1-c)\leq \frac{1}{4^3}\) (mâu thuẫn với $(*)$)

Do đó điều giả sử là sai, tức là trong 3 BĐT trên có ít nhất một BĐT đúng.

Akai Haruma
11 tháng 9 2018 lúc 23:33

Bài 3:

$n=2$ thỏa mãn 2 số trên đều là nguyên tố nhé.

Đặt \(\left\{\begin{matrix} 2^n-1=p\\ 2^n+1=q\end{matrix}\right.\) \(\Rightarrow pq=(2^n-1)(2^n+1)=2^{2n}-1=4^n-1\)

\(4\equiv 1\pmod 3\Rightarrow 4^n\equiv 1^n\equiv 1\pmod 3\)

\(\Rightarrow 4^n-1\vdots 3\Rightarrow pq\vdots 3\Rightarrow \left[\begin{matrix} p\vdots 3\\ q\vdots 3\end{matrix}\right.\)

Nếu $p\vdots 3$ thì $p=3$

\(\Rightarrow 2^n-1=3\Rightarrow 2^n=4\Rightarrow n=2\)

\(\Rightarrow 2^n+1=2^2+1=5\in\mathbb{P}\) (thỏa mãn)

Nếu $q\vdots 3$ thì $q=3$ \(\Rightarrow 2^n+1=3\Rightarrow 2^n=2\Rightarrow n=1\)

\(\Rightarrow p=2^n-1=2^1-1=1\not\in\mathbb{P}\) (loại trừ)

Vậy $n=2$ vẫn thỏa mãn 2 số trên đều là số nguyên tố nhé.

Nguyễn Thị Lan Anh
Xem chi tiết
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 4 2021 lúc 21:56

a) Ta có: \(\left(a-1\right)^2\ge0\forall a\)

\(\Leftrightarrow a^2-2a+1\ge0\forall a\)

\(\Leftrightarrow a^2+2a+1\ge4a\forall a\)

\(\Leftrightarrow\left(a+1\right)^2\ge4a\)(đpcm)

HT2k02
10 tháng 4 2021 lúc 21:58

b) Áp dụng bất đẳng thức Cosi ta có:

\(a+1\ge2\sqrt{a};b+1\ge2\sqrt{b};c+1\ge2\sqrt{c}\\ \Rightarrow\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge8\sqrt{abc}=8\)

Dấu = xảy ra khi và chỉ khi a=b=c=1