Rút gọn
A=1 +5 + 5^2 +5^3 +......+ 5^50 + 5 ^51
bài 4: rút gọn
A= 1+5+5^2+5^3+5^4 + ........ +5^99 + 5^100
B= 1-5+5^2-5^3 + ...... - 3^99 + 5^100
có ai biết giải bài này k hộ mình vs ( chi tiết hộ mình nhé )
bài 1: trục căn thức ở mẫu và rút gọn
a, \(\dfrac{1}{2\sqrt{2}-3\sqrt{3}}\)
b, \(\sqrt{\dfrac{3-\sqrt{5}}{3+\sqrt{5}}}\)
bài 2: trục căn thức ở mẫu và rút gọn
a, \(\dfrac{\sqrt{8}}{\sqrt{5}-\sqrt{3}}\)
b, \(\sqrt{\dfrac{2-\sqrt{3}}{2+\sqrt{3}}}\)
bài 3: trục căn thức và thực hiện phép tính
a, M=\(\left(\dfrac{15}{\sqrt{6}+1}+\dfrac{4}{\sqrt{6}-2}-\dfrac{12}{3-\sqrt{6}}\right).\left(\sqrt{6}+11\right)\)
b, N= \(\left(1-\dfrac{5+\sqrt{5}}{1+\sqrt{5}}\right).\left(\dfrac{5-\sqrt{5}}{1-\sqrt{5}}-1\right)\)
Bài 1:
a.
\(\frac{1}{2\sqrt{2}-3\sqrt{3}}=\frac{2\sqrt{2}+3\sqrt{3}}{(2\sqrt{2}-3\sqrt{3})(2\sqrt{2}+3\sqrt{3})}=\frac{2\sqrt{2}+3\sqrt{3}}{(2\sqrt{2})^2-(3\sqrt{3})^2}=\frac{2\sqrt{2}+3\sqrt{3}}{-19}\)
b.
\(=\sqrt{\frac{(3-\sqrt{5})^2}{(3-\sqrt{5})(3+\sqrt{5})}}=\sqrt{\frac{(3-\sqrt{5})^2}{3^2-5}}=\sqrt{\frac{(3-\sqrt{5})^2}{4}}=\sqrt{(\frac{3-\sqrt{5}}{2})^2}=|\frac{3-\sqrt{5}}{2}|=\frac{3-\sqrt{5}}{2}\)
Bài 2.
a.
\(=\frac{\sqrt{8}(\sqrt{5}+\sqrt{3})}{(\sqrt{5}-\sqrt{3})(\sqrt{5}+\sqrt{3})}=\frac{2\sqrt{2}(\sqrt{5}+\sqrt{3})}{5-3}=\sqrt{2}(\sqrt{5}+\sqrt{3})=\sqrt{10}+\sqrt{6}\)
b.
\(=\sqrt{\frac{(2-\sqrt{3})^2}{(2-\sqrt{3})(2+\sqrt{3})}}=\sqrt{\frac{(2-\sqrt{3})^2}{2^2-3}}=\sqrt{(2-\sqrt{3})^2}=|2-\sqrt{3}|=2-\sqrt{3}\)
Bài 3:
a.
\(M=\left[\frac{15(\sqrt{6}-1)}{(\sqrt{6}+1)(\sqrt{6}-1)}+\frac{4(\sqrt{6}+2)}{(\sqrt{6}-2)(\sqrt{6}+2)}-\frac{12(3+\sqrt{6})}{(3-\sqrt{6})(3+\sqrt{6})}\right](\sqrt{6}+11)\)
\(=\left[\frac{15(\sqrt{6}-1)}{6-1}+\frac{4(\sqrt{6}+2)}{6-2^2}-\frac{12(3+\sqrt{6})}{3^2-6}\right](\sqrt{6}+11)\)
\(=[3(\sqrt{6}-1)+2(\sqrt{6}+2)-4(3+\sqrt{6})](\sqrt{6}+11)=(\sqrt{6}-11)(\sqrt{6}+11)=6-11^2=-115\)
b.
\(N=\left[1-\frac{\sqrt{5}(\sqrt{5}+1)}{\sqrt{5}+1}\right].\left[\frac{\sqrt{5}(\sqrt{5}-1)}{1-\sqrt{5}}-1\right]\)
\(=(1-\sqrt{5})(-\sqrt{5}-1)=(\sqrt{5}-1)(\sqrt{5}+1)=5-1=4\)
Bài 5 rút gọn
a) (a+1)2-(a-1)2-3(a+1).(a-1)
\(=a^2+2a+1-a^2+2a-1-3a^2+3\\ =-3a^2+4a+3\)
Rút gọn
a)\(\left(\sqrt{10}+3\sqrt{2}\right)\)\(\sqrt{14-6\sqrt{5}}\)
b)\(\sqrt{3-\sqrt{5}}.\sqrt{3+\sqrt{5}}\)
\(a,=\sqrt{2}\left(\sqrt{5}+3\right)\sqrt{\left(3-\sqrt{5}\right)^2}=\sqrt{2}\left(\sqrt{5}+3\right)\left(3-\sqrt{5}\right)=4\sqrt{2}\\ b,=\sqrt{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}=\sqrt{4}=2\)
a)\(=\left(\sqrt{10}+3\sqrt{2}\right)\sqrt{\left(3-\sqrt{5}\right)^2}=\left(\sqrt{10}+3\sqrt{2}\right)\left(3-\sqrt{5}\right)=3\sqrt{10}-5\sqrt{2}+9\sqrt{2}-3\sqrt{10}=4\sqrt{2}\)
b) \(=\sqrt{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}=\sqrt{9-5}=\sqrt{4}=2\)
Rút gọn
A=\(|3x-5|+4x-6vớix>\dfrac{3}{5}\)
TH1: x>=5/3
A=3x-5+4x-6=7x-11
TH2: 3/5<x<5/3
A=5-3x+4x-6=x-1
Bài 1: Rút gọn
A=(7-2x)(7+2x)+(2x+7)2
B=(4x-5)2-(2x-1)(8x-5)
C=(5x-3)2-2(5x-3)(5-5x)+(5x-5)2
D=(2a+3b-c)(2a-3b+c)-(4a2-9b2-c2)
A=(7-2x)(7+2x)+(2x+7)2
=49-4x2+4x2+28x+49
= 98+28x
B=(4x-5)2-(2x-1)(8x-5)
= 16x2-25-((8x(2x-1))-(5(2x-1)))
= 16x2-25-((16x2+8x)-(10x+5))
= 16x2-25-(16x2+8x-10x-5)
= 16x2-25-16x2-8x+10x+5
= -20+2x
Bài 1: Rút gọn
A=(7-2x)(7+2x)+(2x+7)2
B=(4x-5)2-(2x-1)(8x-5)
C=(5x-3)2-2(5x-3)(5-5x)+(5x-5)2
D=(2a+3b-c)(2a-3b+c)-(4a2-9b2-c2)
a) Ta có: \(A=\left(7-2x\right)\left(7+2x\right)+\left(2x+7\right)^2\)
\(=7-4x^2+4x^2+28x+49\)
\(=28x+56\)
b) Ta có: \(B=\left(4x-5\right)^2-\left(2x-1\right)\left(8x-5\right)\)
\(=16x^2-40x+25-\left(16x^2-10x-8x+5\right)\)
\(=16x^2-40x+25-16x^2+18x-5\)
\(=-22x+20\)
c) Ta có: \(C=\left(5x-3\right)^2-2\left(5x-3\right)\left(5-5x\right)+\left(5x-5\right)^2\)
\(=\left(5x-3\right)^2+2\cdot\left(5x-3\right)\left(5x-5\right)+\left(5x-5\right)^2\)
\(=\left(5x-3+5x-5\right)^2\)
\(=\left(10x-8\right)^2\)
\(=100x^2-160x+64\)
d) Ta có: \(D=\left(2a+3b-c\right)\left(2a-3b+c\right)-\left(4a^2-9b^2-c^2\right)\)
\(=\left[\left(2a+\left(3b-c\right)\right)\left(2a-\left(3b-c\right)\right)\right]-\left(4a^2-9b^2-c^2\right)\)
\(=4a^2-\left(3b-c\right)^2-4a^2+9b^2+c^2\)
\(=-9b^2+6bc-c^2+9b^2+c^2\)
=6bc
Rút gọn tổng sau
A=1+2+2^2+2^3+...+2^50+2^51
Cho B=5+5^2+5^3+...+5^99+5^100
\(A=1+2+2^2+...+2^{51}\)
\(2A=2+2^2+2^3+...+2^{52}\)
\(2A-A=\left(2+2^2+2^3+...+2^{52}\right)-\left(1+2+2^2+...+2^{51}\right)\)
\(A=2^{52}-1\)
\(B=5+5^2+5^3+...+5^{100}\)
\(5B=5^2+5^3+5^4+...+5^{101}\)
\(5B-B=\left(5^2+5^3+5^4+...+5^{101}\right)-\left(5+5^2+5^3+...+5^{100}\right)\)
\(4B=5^{101}-5\)
\(B=\frac{5^{101}-5}{4}\)
rút gọn
a.\(\dfrac{5\sqrt{2}-2\sqrt{5}}{\sqrt{5}-\sqrt{2}}+\dfrac{6}{2-\sqrt{10}}\)
b.\(\dfrac{6}{\sqrt{5}-1}+\dfrac{7}{1-\sqrt{3}}-\dfrac{2}{\sqrt{3}-\sqrt{5}}\)
lm mhanh giúp mk nhé!mk đang cần gấp!
`a)(5sqrt2-2sqrt5)/(sqrt5-sqrt2)+6/(2-sqrt{10})`
`=(sqrt{10}(sqrt5-sqrt2))/(sqrt5-sqrt2)+(6(2+sqrt{10}))/(4-10)`
`=sqrt{10}-(2+sqrt{10})`
`=-2`
`b)6/(sqrt5-1)+7/(1-sqrt3)-2/(sqrt3-sqrt5)`
`=(6(sqrt5+1))/(5-1)+(7(1+sqrt3))/(1-3)-(2(sqrt3+sqrt5))/(3-5)`
`=(6(sqrt5+1))/4-(7+7sqrt3)/2+sqrt3+sqrt5`
`=(3sqrt5+3)/2-(7+7sqrt3)/2+sqrt3+sqrt5`
`=(3sqrt5+3-7-7sqrt3+2sqrt3+2sqrt5)/2`
`=(5sqrt5-5sqrt3-4)/2`