Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
pham lan phuong
Xem chi tiết
Mới vô
8 tháng 1 2018 lúc 17:51

\(x^4+2x^3-2x^2+2x-3=0\\ \Leftrightarrow x^4+3x^3-x^3-3x^2+x^2+3x-x-3=0\\ \Leftrightarrow x^3\left(x+3\right)-x^2\left(x+3\right)+x\left(x+3\right)-\left(x+3\right)=0\\ \Leftrightarrow\left(x+3\right)\left(x^3-x^2+x-1\right)=0\\ \Leftrightarrow\left(x+3\right)\left[x^2\left(x-1\right)+\left(x-1\right)\right]=0\\ \Leftrightarrow\left(x+3\right)\left(x-1\right)\left(x^2+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+3=0\\x-1=0\\x^2+1=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-3\\x=1\end{matrix}\right.\left(\text{vì }x^2+1\ge1>0\right)\)

Vậy ...

\(\left(x-1\right)\left(x^2+5x-2\right)-x^3+1=0\\ \Leftrightarrow\left(x-1\right)\left(x^2+5x-2\right)-\left(x^3-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x^2+5x-2\right)-\left(x-1\right)\left(x^2+x+1\right)=0\\ \Leftrightarrow\left(x-1\right)\left[\left(x^2+5x-2\right)-\left(x^2+x+1\right)\right]=0\\ \Leftrightarrow\left(x-1\right)\left(4x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-1=0\\4x-3=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{3}{4}\end{matrix}\right.\)

Vậy ...

\(x^2+\left(x+2\right)\left(11x-7\right)=4\\ \Leftrightarrow x^2-4+\left(x+2\right)\left(11x-7\right)=0\\ \Leftrightarrow\left(x+2\right)\left(x-2\right)+\left(11x-7\right)=0\\ \Leftrightarrow\left(x+2\right)\left(x-2+11x-7\right)=0\\ \Leftrightarrow\left(x+2\right)\left(12x-9\right)=0\\ \Leftrightarrow3\left(x+2\right)\left(4x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+2=0\\4x-3=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{3}{4}\end{matrix}\right.\)

Vậy ...

Lelemalin
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 8 2021 lúc 22:28

a: Ta có: \(x^4-2x^3+2x-1\)

\(=\left(x-1\right)\left(x+1\right)\left(x^2+1\right)-2x\left(x-1\right)\left(x+1\right)\)

\(=\left(x-1\right)\left(x+1\right)\cdot\left(x^2-2x+1\right)\)

\(=\left(x-1\right)^3\cdot\left(x+1\right)\)

b: Ta có: \(-a^4+a^3+2a^3+2a^2\)

\(=-a^2\left(a^2-a-2a-2\right)\)

c: Ta có: \(x^4+x^3+2x^2+x+1\)

\(=x^4+x^3+x^2+x^2+x+1\)

\(=\left(x^2+x+1\right)\left(x^2+1\right)\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
9 tháng 12 2019 lúc 8:22

Bích Du Lương
Xem chi tiết
TrịnhAnhKiệt
Xem chi tiết
Tên ?
Xem chi tiết
Trúc Giang
18 tháng 7 2021 lúc 16:36

a) \(x^2-2x-4y^2-4y=\left(x^2-4y^2\right)-\left(2x+4y\right)=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)=\left(x+2y\right)\left(x-2y-2\right)\)

b) \(x^3+2x^2+2x+1=\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)=\left(x+1\right)\left(x^2-x+1+2x\right)=\left(x+1\right)\left(x^2+x+1\right)\)

c) \(x^3-4x^2+12x-27=x^3-3x^2-x^2+3x+9x-27=x^2\left(x-3\right)-x\left(x-3\right)+9\left(x-3\right)=\left(x-3\right)\left(x^2-x+9\right)\)

d) \(a^6-a^4+2a^3+2a^2=a^2\left(a^4-a^2+2a+2\right)=a^2\left[a^2\left(a-1\right)\left(a+1\right)+2\left(a+1\right)\right]=a^2\left(a+1\right)\left(a^3-a^2+2\right)=a^2\left(a+1\right)\left[a^3+a^2-2a^2+2\right]=a^2\left(a+1\right)\left[a^2\left(a+1\right)-2\left(a-1\right)\left(a+1\right)\right]=a^2\left(a+1\right)^2\left(a^2-2a+2\right)\)

Nguyễn Lê Phước Thịnh
18 tháng 7 2021 lúc 22:59

a) Ta có: \(x^2-2x-4y^2-4y\)

\(=\left(x^2-4y^2\right)-\left(2x+4y\right)\)

\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)

\(=\left(x+2y\right)\left(x-2y-2\right)\)

b) Ta có: \(x^3+2x^2+2x+1\)

\(=\left(x^3+1\right)+2x\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2+x+1\right)\)

Nguyễn Lê Phước Thịnh
18 tháng 7 2021 lúc 23:01

d) Ta có: \(a^6-a^4+2a^3+2a^2\)

\(=a^2\left(a^4-a^2+2a+2\right)\)

\(=a^2\left[a^2\left(a^2-1\right)+\left(2a+2\right)\right]\)

\(=a^2\left[a^2\left(a-1\right)\left(a+1\right)+2\left(a+1\right)\right]\)

\(=a^2\cdot\left(a+1\right)\left(a^3-a+2\right)\)

c) Ta có: \(x^3-4x^2+12x-27\)

\(=\left(x^3-27\right)-\left(4x^2-12x\right)\)

\(=\left(x-3\right)\left(x^2+3x+9\right)-4x\left(x-3\right)\)

\(=\left(x-3\right)\left(x^2-x+9\right)\)

Nguyễn An
Xem chi tiết
Edogawa Conan
13 tháng 8 2021 lúc 9:33

Ta có: \(2x^2+3x+\sqrt{2x^2+3x+9}=33\)

   \(\Leftrightarrow\left(2x^2+3x-27\right)+\left(\sqrt{2x^2+3x+9}-6\right)=0\)

   \(\Leftrightarrow\left(2x+9\right)\left(x-3\right)+\dfrac{2x^2+3x-27}{\sqrt{2x^2+3x+9}+6}=0\)

   \(\Leftrightarrow\left(2x+9\right)\left(x-3\right)+\dfrac{\left(2x+9\right)\left(x-3\right)}{\sqrt{2x^2+3x+9}+6}=0\)

   \(\Leftrightarrow\left(2x+9\right)\left(x-3\right)\left(1+\dfrac{1}{\sqrt{2x^2+3x+9}+6}\right)=0\)

   \(\Leftrightarrow\left[{}\begin{matrix}2x+9=0\\x-3=0\\1+\dfrac{1}{\sqrt{2x^2+3x+9}+6}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{9}{2}\\x=3\\1+\dfrac{1}{\sqrt{2x^2+3x+9}+6}=0\left(1\right)\end{matrix}\right.\)

Giải (1) ta có:

\(\left(1\right)\Leftrightarrow\dfrac{1}{\sqrt{2x^2+3x+9}+6}=-1\)

     \(\Leftrightarrow1=-\sqrt{2x^2+3x+9}-6\)

     \(\Leftrightarrow7=-\sqrt{2x^2+3x+9}\)

     \(\Leftrightarrow49=2x^2+3x+9\)

      \(\Leftrightarrow2x^2+3x-40=0\)

Ta có:Δ=32-4.2.(-40)=329

Vì Δ>0 nên phương trình có 2 nghiệm phân biệt là:

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{-3+\sqrt{329}}{4}\\x=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{-3-\sqrt{329}}{4}\end{matrix}\right.\)

Vậy phương trình có 4 nghiệm là ....

Trần Thị Tuý Nga
Xem chi tiết
Nguyễn Việt Lâm
9 tháng 4 2021 lúc 22:34

\(A\left(x\right)+B\left(x\right)-C\left(x\right)\)

\(=\left(-7+2x^2+x^4+3x^5-x^3\right)+\left(-x+x^4+2x^3-7\right)-\left(2x-x^4-3x^3\right)\)

\(=3x^5+3x^4+4x^3+2x^2-3x-14\)

Tên ?
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 7 2021 lúc 23:17

e) Ta có: \(x^4-2x^3+2x-1\)

\(=\left(x^4-1\right)-2x\left(x^2-1\right)\)

\(=\left(x^2+1\right)\left(x-1\right)\left(x+1\right)-2x\left(x-1\right)\left(x+1\right)\)

\(=\left(x-1\right)\left(x+1\right)\cdot\left(x^2-2x+1\right)\)

\(=\left(x+1\right)\cdot\left(x-1\right)^3\)

h) Ta có: \(3x^2-3y^2-2\left(x-y\right)^2\)

\(=3\left(x^2-y^2\right)-2\left(x-y\right)^2\)

\(=3\left(x-y\right)\left(x+y\right)-2\left(x-y\right)^2\)

\(=\left(x-y\right)\left(3x+3y-2x+2y\right)\)

\(=\left(x-y\right)\left(x+5y\right)\)

Nguyễn Lê Phước Thịnh
18 tháng 7 2021 lúc 23:11

a) Ta có: \(x^2-y^2-2x-2y\)

\(=\left(x-y\right)\left(x+y\right)-2\left(x+y\right)\)

\(=\left(x+y\right)\left(x-y-2\right)\)

b) Ta có: \(x^2\left(x+2y\right)-x-2y\)

\(=\left(x+2y\right)\left(x^2-1\right)\)

\(=\left(x+2y\right)\left(x-1\right)\left(x+1\right)\)

Nguyễn Lê Phước Thịnh
18 tháng 7 2021 lúc 23:12

c) Ta có: \(x^3-4x^2-9x+36\)

\(=x^2\left(x-4\right)-9\left(x-4\right)\)

\(=\left(x-4\right)\left(x^2-9\right)\)

\(=\left(x-4\right)\left(x-3\right)\left(x+3\right)\)

d) Ta có: \(x^4+2x^3+2x-1\)

\(=\left(x^2-1\right)\left(x^2+1\right)+2x\left(x^2+1\right)\)

\(=\left(x^2+1\right)\left(x^2+2x-1\right)\)

Nguyen Minh Hieu
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 7 2021 lúc 23:45

c) Ta có: \(\dfrac{5x^4+9x^3-2x^2-4x-8}{x-1}\)

\(=\dfrac{5x^4-5x^3+14x^3-14x^2+12x^2-12x+8x-8}{x-1}\)

\(=\dfrac{5x^3\left(x-1\right)+14x^2\left(x-1\right)+12x\left(x-1\right)+8\left(x-1\right)}{x-1}\)

\(=5x^3+14x^2+12x+8\)

d) Ta có: \(\dfrac{5x^3+14x^2+12x+8}{x+2}\)

\(=\dfrac{5x^3+10x^2+4x^2+8x+4x+8}{x+2}\)

\(=\dfrac{5x^2\left(x+2\right)+4x\left(x+2\right)+4\left(x+2\right)}{x+2}\)

\(=5x^2+4x+4\)