Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Khánh Linh
Xem chi tiết
Akai Haruma
21 tháng 5 2021 lúc 23:19

Hầy mình không nghĩ lớp 7 đã phải làm những bài biến đổi như thế này. Cái này phù hợp với lớp 8-9 hơn.

1.

Đặt $x^2-y^2=a; y^2-z^2=b; z^2-x^2=c$. 

Khi đó: $a+b+c=0\Rightarrow a+b=-c$

$\text{VT}=a^3+b^3+c^3=(a+b)^3-3ab(a+b)+c^3$

$=(-c)^3-3ab(-c)+c^3=3abc$

$=3(x^2-y^2)(y^2-z^2)(z^2-x^2)$

$=3(x-y)(x+y)(y-z)(y+z)(z-x)(z+x)$

$=3(x-y)(y-z)(z-x)(x+y)(y+z)(x+z)$

$=3.4(x-y)(y-z)(z-x)=12(x-y)(y-z)(z-x)$

Ta có đpcm.

Akai Haruma
21 tháng 5 2021 lúc 23:22

Bài 2:

Áp dụng kết quả của bài 1:

Mẫu:

$(x^2-y^2)^3+(y^2-z^2)^3+(z^2-x^2)^3=3(x-y)(y-z)(z-x)(x+y)(y+z)(z+x)=3(x-y)(y-z)(z-x)(1)$

Tử: 

Đặt $x-y=a; y-z=b; z-x=c$ thì $a+b+c=0$

$(x-y)^3+(y-z)^3+(z-x)^3=a^3+b^3+c^3$

$=(a+b)^3-3ab(a+b)+c^3=(-c)^3-3ab(-c)+c^3=3abc$

$=3(x-y)(y-z)(z-x)(2)$

Từ $(1);(2)$ suy ra \(\frac{(x-y)^3+(y-z)^3+(z-x)^3}{(x^2-y^2)^3+(y^2-z^2)^3+(z^2-x^2)^3}=1\)

 

Akai Haruma
21 tháng 5 2021 lúc 23:23

Bài 3:

\(ab+bc+ac=\frac{(a+b+c)^2-(a^2+b^2+c^2)}{2}=\frac{2^2-2}{2}=1\)

Do đó:

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{ab+bc+ac}{abc}=\frac{1}{abc}\)

Ta có đpcm.

Thomas Huy Nguyễn
Xem chi tiết
MInemy Nguyễn
Xem chi tiết
Big City Boy
Xem chi tiết
khong có
Xem chi tiết
Tăng Quốc Nghĩa
13 tháng 9 2019 lúc 21:31

ta có :

\(\left(x+y+z\right)^3=x^3+y^3+z^3+3\left(x+y\right)\left(y+z\right)\left(z+x\right)\)

\(\Leftrightarrow\left(x+y+z\right)^3-x^3-y^3-z^3=3\left(x+y\right)\left(y+z\right)\left(z+x\right)\)

(đpcm)

ILoveMath
Xem chi tiết
Ayakashi
Xem chi tiết
Trần Việt Linh
17 tháng 7 2016 lúc 22:19

Có : \(\left(x+y+z\right)^3-x^3-y^3-z^3\)

   =     \(\left[\left(x+y\right)+z\right]^3-x^3-y^3-z^3\)      

   =      \(\left(x+y\right)^3+3z\left(x+y\right)^2+3z^2\left(x+y\right)-x^3-y^3-z^3\)

   =    \(x^3+3x^2y+3xy^2+y^3+3z\left(x+y\right)^2+3z^2\left(x+y\right)-x^3-y^3-z^3\)

   =     \(3x^2y+3xy^2+3z\left(x+y\right)^2+3z^2\left(x+y\right)\)

   =     \(3xy\left(x+y\right)+3z\left(x+y\right)^2+3z^2\left(x+y\right)\)

   =    \(3\left(x+y\right)\left(xy+xz+yz+z^2\right)\)

   =   \(3\left(x+y\right)\left[x\left(y+z\right)+z\left(y+z\right)\right]\)

   =   \(3\left(x+y\right)\left(y+z\right)\left(z+x\right)\)

\(\Rightarrow\left(x+y+z\right)^3=x^3+y^3+z^3+3\left(x+y\right)\left(y+z\right)\left(z+x\right)\)

          Vậy đẳng thức trên được chứng minh

  NHA           (^.^)

Phạm Tuấn Kiệt
Xem chi tiết
Thắng Nguyễn
7 tháng 6 2017 lúc 23:21

Sửa đề: Sửa x+y thành x-y đi nhé ở giả thiết âý

Lời giải+làm rõ cái gợi ý

Ta có mệnh đề \(a+b+c=0\) thì \(a^3+b^3+c^3=3abc\), áo dụng cái này với \(a=\left(y-z\right)\sqrt[3]{1-x^3};b=\left(z-x\right)\sqrt[3]{1-y^3};c=\left(x-y\right)\sqrt{1-z^3}\) ta được: 

\(\left(y-z\right)^3\left(1-x^3\right)+\left(z-x\right)^3\left(1-y^3\right)+....=...\) (như trên)

Suy ra \(\left(\left(y-z\right)^3+\left(z-x\right)^3+\left(x-y\right)^3\right)-\left(\left(xy-xz\right)^3+\left(yz-xy\right)^3+\left(zx-yz\right)^3\right)\)

\(=3\left(x-y\right)\left(y-z\right)\left(x+z\right)\sqrt[3]{1-x^3}\sqrt[3]{1-y^3}\sqrt[3]{1-z^3}\left(1\right)\)

Ta lại có:\(\left(y-z\right)^3+\left(z-x\right)^3+\left(x-y\right)^3=3\left(x-y\right)\left(y-z\right)\left(z-x\right)\left(2\right)\)

Và \(\left(xy-zx\right)^3+\left(yz-xy\right)^3+\left(zx-yz\right)^3=3xyz\left(x-y\right)\left(y-z\right)\left(z-x\right)\left(3\right)\)

Thay (2),(3) vào (1) ta có:

\(3\left(x-y\right)\left(y-z\right)\left(z-x\right)\left(1-xyz\right)=3\left(x-y\right)\left(y-z\right)\left(z-x\right)\sqrt[3]{1-x^3}\sqrt[3]{1-y^3}\sqrt[3]{1-z^3}\)

Vì x,y,z đôi một khác nhau nên 

\(\left(1-xyz\right)=\sqrt[3]{1-x^3}\sqrt[3]{1-y^3}\sqrt[3]{1-z^3}\)

\(\Leftrightarrow\left(1-xyz\right)^3=\left(1-x^3\right)\left(1-y^3\right)\left(1-z^3\right)\)

P.s:mệt quá rồi, vừa làm vừa ngáp có gì mai thanh toán

Nguyễn Duy Long
7 tháng 6 2017 lúc 20:45

Bạn lập phương 2 vế của phương trình =0 đó rồi nhân tung ra (vất vả) rồi kết hợp với gợi ý của thầy cậu là ok

Phạm Tuấn Kiệt
7 tháng 6 2017 lúc 21:11

còn cách nào khác không bạn ?

khong có
Xem chi tiết
khong có
24 tháng 7 2019 lúc 21:58

giúp với