Cho pt x^4-4(m+2)x^2+(2m-3)^2.
Giải ra x em phát, cảm ơn
Cho phương trình \(x^4+\left(1-2m\right)x^2+m^2-1=0\)
a. Định m để pt vô nghiệm.
b. Định m để pt có 2 nghiệm phân biệt.
c. Định m để pt có 3 nghiệm phân biệt.
d. Định m để pt có 4 nghiệm phân biệt.
(Giải chi tiết giúp em em cảm ơn ạ)
Đặt \(x^2=t\ge0\) pt trở thành: \(t^2+\left(1-2m\right)t+m^2-1=0\) (1)
\(\Delta=\left(1-2m\right)^2-4\left(m^2-1\right)=-4m+5\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}t_1+t_2=2m-1\\t_1t_2=m^2-1\end{matrix}\right.\)
Từ \(x^2=t\) (2) ta có nhận xét: nếu \(t< 0\) thì (2) vô nghiệm, nếu \(t=0\) thì (2) có đúng 1 nghiệm \(x=0\), nếu \(t>0\) thì (2) có 2 nghiệm phân biệt \(x=\pm\sqrt{t}\)
Do đó:
a.
Phương trình đã cho vô nghiệm khi: (1) vô nghiệm hoặc (1) có 2 nghiệm đều âm
TH1: (1) vô nghiệm \(\Rightarrow-4m+5< 0\Rightarrow m>\dfrac{5}{4}\)
TH2: (1) có 2 nghiệm đều âm \(\Rightarrow\left\{{}\begin{matrix}-4m+5\ge0\\t_1+t_2=2m-1< 0\\t_1t_2=m^2-1>0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}m\le\dfrac{5}{4}\\m< \dfrac{1}{2}\\\left[{}\begin{matrix}m>1\\m< -1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m< -1\)
Kết hợp lại ta được: \(\left[{}\begin{matrix}m>\dfrac{5}{4}\\m< -1\end{matrix}\right.\)
b.
Pt có 2 nghiệm pb khi và chỉ khi (1) có đúng 2 nghiệm trái dấu (khi đó nghiệm dương của t sẽ cho 2 nghiệm x và nghiệm âm ko cho nghiệm x nào)
\(\Rightarrow t_1t_2=m^2-1< 0\Rightarrow-1< m< 1\)
c.
Pt có 3 nghiệm pb khi và chỉ khi (1) có 1 nghiệm bằng 0 và 1 nghiệm dương
\(\Rightarrow\left\{{}\begin{matrix}-4m+5>0\\t_1+t_2=2m-1>0\\t_1t_2=m^2-1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< \dfrac{5}{4}\\m>\dfrac{1}{2}\\\left[{}\begin{matrix}m=1\\m=-1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m=1\)
d.
Pt có 4 nghiệm pb khi và chỉ khi (1) có 2 nghiệm dương pb
\(\Rightarrow\left\{{}\begin{matrix}-4m+5>0\\t_1+t_2=2m-1>0\\t_1t_2=m^2-1>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< \dfrac{5}{4}\\m>\dfrac{1}{2}\\\left[{}\begin{matrix}m>1\\m< -1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow1< m< \dfrac{5}{4}\)
1. (x2-7x+6)\(\sqrt{x-5}\)=0
2. (x2+x)2 -2(x2+x)=0
3.Cho pt (m+1)x2-(2m-2)x+m-2=0
a,tim m để pt có nghiệm
b, tìm m để pt có 1 nghiệm = 3 lần nghiệm kia
c,tìm m để pt có 2 nghiệm x1,x2 thỏa mãn 4(x1+x2)=7x1x2
4. cho pt x2+mx+m+3=0
tìm m để pt có 1 nghiệm x1,x2 sao cho 2x1+3x2=5
giải nhanh giúp e với ạ em cần gấp ạ e xin cảm ơn ạ
1. Từ đề bài suy ra (x^2 -7x+6)=0 hoặc x-5=0
Nếu x-5=0 suy ra x=5
Nếu x^2-7x+6=0 suy ra x^2-6x-(x-6)=0
Suy ra x(x-6)-(x-6)=0 suy ra (x-1)(x-6)=0
Suy ra x=1 hoặc x=6.
bài 1 ; \(\left(x^2-7x+6\right)\sqrt{x-5}=0\)
\(< =>\orbr{\begin{cases}x^2-7x+6=0\left(+\right)\\\sqrt{x-5}=0\left(++\right)\end{cases}}\)
\(\left(+\right)\)ta dễ dàng nhận thấy \(1-7+6=0\)
thì phương trình sẽ có nghiệm là \(\orbr{\begin{cases}x=1\\x=\frac{c}{a}=6\end{cases}}\)
\(\left(++\right)< =>x-5=0< =>x=5\)
Vậy tập nghiệm của phương trình trên là \(\left\{1;5;6\right\}\)
\(\left(x^2+x\right)^2-2\left(x^2+x\right)=0\)
\(< =>\left(x^2+x\right)\left(x^2+x-2\right)=0\)
\(< =>\orbr{\begin{cases}x^2+x=0\left(+\right)\\x^2+x-2=0\left(++\right)\end{cases}}\)
\(\left(+\right)< =>x\left(x+1\right)=0\)
\(< =>\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
\(\left(++\right)< =>\Delta=1+8=9>0\)
\(< =>\orbr{\begin{cases}x=\frac{-1-\sqrt{9}}{2}=\frac{-1-3}{2}=-\frac{4}{2}=-2\\x=\frac{-1+\sqrt{9}}{2}=\frac{-1+3}{2}=\frac{2}{2}=1\end{cases}}\)
Vậy tập nghiệm của phương trình trên là \(\left\{-2;-1;0;1\right\}\)
1. giải bpt
a) |x2-5x-9|<|x-6|
b) \(\frac{\text{-3}}{\text{|x-2|-3}}\)≥|x-2|+1
2. tìm m để pt (m+1)x2-2(m-1)X+3m-3≥0 vô nghiệm
3. tìm m để pt (m+1)x2-2(m-1)x+2m+1=0 có 2 nghiệm x1,x2 thỏa: x1<1<x2
4. Tìm txđ hàm số y=\(\sqrt{\text{|x^2+3x-4|-x+8}}\)
Giải giúp em với> Em cảm ơn nhiều 💚
cho pt: ( 2m + 1 ) x - 4m + 7 = 0
a, tìm giá trị của m để pt nhận x = -2/3 là nghiệm
b, tìm giá trị nguyên của m để pt (1) có nghiệm nguyên duy nhất
giúp em với ạ em cảm ơn trước
Tìm m để pt có hai nghiệm phân biệt:
pt: x4 - 2(m+1)x2 + 2m + 1= 0
Cảm ơn nhiều
Đặt \(x^2=a\left(a\ge0\right)\)
Khi đó PT tương đương: \(a^2-2\left(m+1\right)a+2m+1=0\) (1)
\(\Delta^'=\left[-\left(m+1\right)\right]^2-1\cdot\left(2m+1\right)=m^2+2m+1-2m-1=m^2\)
Mà \(\Delta^'=m^2\ge0\left(\forall m\right)\) => PT luôn có nghiệm
Để PT đề bài có 2 nghiệm phân biệt thì ta có 2TH sau:
TH1: PT(1) phải có 1 nghiệm dương, 1 nghiệm âm
Khi đó theo hệ thức viet thì \(2m+1< 0\Leftrightarrow m< -\frac{1}{2}\)
Khi đó a dương sẽ là giá trị thỏa mãn => \(\Rightarrow\hept{\begin{cases}x_1=\sqrt{a}\\x_2=-\sqrt{a}\end{cases}}\)
TH2: PT(1) có nghiệm kép dương
PT có nghiệm kép thì \(\Delta^'=0\Rightarrow m=0\)
Thay vào ta được: \(x^4-2x^2+1=0\)
\(\Leftrightarrow\left(x^2-1\right)^2=0\Rightarrow x^2-1=0\Rightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\left(tm\right)\)
Vậy \(\orbr{\begin{cases}m=0\\m< -\frac{1}{2}\end{cases}}\) thì PT có 2 nghiệm phân biệt
Cho phương trình : x2- (2m-1) + m2 - 2 = 0
a) Gọi x1 , x2 là nghiệm của PT , không giải PT hãy tính x1 + x2 ; x1x2
b) Tìm m sao cho nghiệm x1, x2 của phương trình thoả mãn điều kiện x1x2 = 2(x1+x2)
Giải giúp em với ạ . Em cảm ơn <3
a. Vì \(x_1,x_2\) là nghiệm của `pt` nên theo hệ thức Vi-et:
\(\Rightarrow\left\{{}\begin{matrix}x_1+x_2=2m-1\\x_1x_2=m^2-2\end{matrix}\right.\)
b. Ta có: \(x_1x_2=2\left(x_1+x_2\right)\Leftrightarrow m^2-2=2\left(2m-1\right)\Leftrightarrow m^2-4m-2+2=0\Leftrightarrow m^2-4m=0\Leftrightarrow m\left(m-4\right)=0\Leftrightarrow\left[{}\begin{matrix}m=0\\m=4\end{matrix}\right.\)
Giải pt:
\(\left(x-1\right)\left(x+2\right)+4\left(x-1\right)\sqrt{\dfrac{x+2}{x-1}}=12\)
Em cảm ơn ạ.
Đk:\(x\ge1;x\le-2\)
Đặt \(t=\left(x-1\right)\sqrt{\dfrac{x+2}{x-1}}\)
\(\Rightarrow t^2=\left(x-1\right)\left(x+2\right)\)
Pttt: \(t^2+4t=12\Leftrightarrow\left[{}\begin{matrix}t=2\\t=-6\end{matrix}\right.\)
TH1: \(t=2\Rightarrow\left(x-1\right)\sqrt{\dfrac{x+2}{x-1}}=2\)\(\Leftrightarrow\left\{{}\begin{matrix}x-1>0\\\left(x-1\right)\left(x+2\right)=4\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x>1\\x^2+x-6=0\end{matrix}\right.\)\(\Rightarrow x=2\) (thỏa mãn)
TH2:\(t=-6\Rightarrow\left(x-1\right)\sqrt{\dfrac{x+2}{x-1}}=-6\)\(\Leftrightarrow\left\{{}\begin{matrix}x-1< 0\\\left(x-1\right)\left(x+2\right)=36\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x< 1\\x^2+x-38=0\end{matrix}\right.\)\(\Rightarrow x=\dfrac{-1-3\sqrt{17}}{2}\) (thỏa mãn)
Vậy...
Giải hệ pt:
\(\left\{{}\begin{matrix}x+y-\sqrt{xy}=1\\\sqrt{x^2+3}+\sqrt{y^3+3}=4\end{matrix}\right.\)
Em cảm ơn ạ.
tìm m để \(f\left(x\right)=\left(2m^2+m-6\right)x^2+\left(2m-3\right)x-1>0\) vô nghiệm (mn giải chi tiết giúp em với, em cảm ơn ạ)
BPT đã cho vô nghiệm khi và chỉ khi BPT \(f\left(x\right)\le0\) nghiệm đúng với mọi x
TH1: \(\left\{{}\begin{matrix}2m^2+m-6=0\\2m-3=0\end{matrix}\right.\) \(\Rightarrow m=\dfrac{3}{2}\)
TH2: \(\left\{{}\begin{matrix}2m^2+m-6< 0\\\Delta=\left(2m-3\right)^2+4\left(2m^2+m-6\right)\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2m^2+m-6< 0\\12m^2-8m-15\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-3< m< \dfrac{3}{2}\\-\dfrac{5}{6}\le m\le\dfrac{3}{2}\end{matrix}\right.\) \(\Rightarrow-\dfrac{5}{6}\le m< \dfrac{3}{2}\)
Kết hợp 2 trường hợp ta được \(-\dfrac{5}{6}\le m\le\dfrac{3}{2}\)