GPT
a) \(x+\frac{3X}{\sqrt{x^2+1}}=1\)
b) \(x^2+\sqrt{6x^2+4x}=x+1\)
Giải pt
a) \(2x^2+\sqrt{x^2-5x-6}=10x+15\)
b) \(5\sqrt{3x^2-4x-2}-6x^2+8x+7=0\)
c) \(x^2+\sqrt{2x^2+4x+3}=6-2x\)
d) \(2\sqrt{\frac{3x-1}{x}}=\frac{x}{3x-1}+1\)
e) \(\sqrt{\frac{24x-4}{x}}=\frac{x}{6x-1}+1\)
f) \(\sqrt{\frac{2x-1}{x}}+1+\sqrt{\frac{x}{2x-1}}=\frac{3x}{2x-1}\)
a/ ĐKXĐ: ...
\(\Leftrightarrow2\left(x^2-5x-6\right)+\sqrt{x^2-5x-6}-3=0\)
Đặt \(\sqrt{x^2-5x-6}=a\ge0\)
\(2a^2+a-3=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-\frac{3}{2}\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x^2-5x-6}=1\Leftrightarrow x^2-5x-7=0\)
b/ ĐKXĐ: ...
\(\Leftrightarrow5\sqrt{3x^2-4x-2}-2\left(3x^2-4x-2\right)+3=0\)
Đặt \(\sqrt{3x^2-4x-2}=a\ge0\)
\(-2a^2+5a+3=0\) \(\Rightarrow\left[{}\begin{matrix}a=3\\a=-\frac{1}{2}\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{3x^2-4x-2}=3\Leftrightarrow3x^2-4x-11=0\)
c/ \(\Leftrightarrow x^2+2x-6+\sqrt{2x^2+4x+3}=0\)
Đặt \(\sqrt{2x^2+4x+3}=a>0\Rightarrow x^2+2x=\frac{a^2-3}{2}\)
\(\frac{a^2-3}{2}-6+a=0\Leftrightarrow a^2+2a-15=0\Rightarrow\left[{}\begin{matrix}x=3\\x=-5\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{2x^2+4x+3}=3\Leftrightarrow2x^2+4x-6=0\)
d/ ĐKXĐ: ...
Đặt \(\sqrt{\frac{3x-1}{x}}=a>0\)
\(2a=\frac{1}{a^2}+1\Leftrightarrow2a^3-a^2-1=0\)
\(\Leftrightarrow\left(a-1\right)\left(2a^2+a+1\right)=0\)
\(\Rightarrow a=1\Rightarrow\sqrt{\frac{3x-1}{x}}=1\Leftrightarrow3x-1=x\)
e/ĐKXĐ: ...
\(\Leftrightarrow2\sqrt{\frac{6x-1}{x}}=\frac{x}{6x-1}+1\)
Đặt \(\sqrt{\frac{6x-1}{x}}=a>0\)
\(2a=\frac{1}{a^2}+1\Leftrightarrow2a^3-a^2-1=0\Leftrightarrow\left(a-1\right)\left(2a^2+a+1\right)=0\)
\(\Rightarrow a=1\Rightarrow\sqrt{\frac{6x-1}{x}}=1\Rightarrow6x-1=x\)
f/ ĐKXĐ: ...
Đặt \(\sqrt{\frac{x}{2x-1}}=a>0\)
\(\frac{1}{a}+1+a=3a^2\)
\(\Leftrightarrow3a^3-a^2-a-1=0\)
\(\Leftrightarrow\left(a-1\right)\left(3a^2+2a+1\right)=0\)
\(\Leftrightarrow a=1\Rightarrow\sqrt{\frac{x}{2x-1}}=1\Rightarrow x=2x-1\)
bài 1 : giải phương trình:
a. \(\sqrt{x+2\sqrt{ }x-1}=2\)
b. \(\sqrt{x^2-4x+4}=\sqrt{4x^212x+9}\)
c.\(\sqrt{x+4\sqrt{ }x-4}=2\)
d. \(\sqrt{x^2-6x+9}=2\)
e. \(\sqrt{x^2-3x+2}=\sqrt{x-1}\)
f. \(\sqrt{4x^2-4x+1}=\sqrt{x^2-6x+9}\)
d) \(\sqrt{x^2-6x+9}=2\Leftrightarrow\sqrt{\left(x-3\right)^2}=2\Leftrightarrow x-3=2\Leftrightarrow x=5\)
e) đk: \(x\ge2\)\(\sqrt{x^2-3x+2}=\sqrt{x-1}\Leftrightarrow\sqrt{\left(x-2\right)\left(x-1\right)}=\sqrt{x-1}\Leftrightarrow\sqrt{x-2}=1\Leftrightarrow x-2=1\Leftrightarrow x=3\)f) \(\sqrt{4x^2-4x+1}=\sqrt{x^2-6x+9}\Leftrightarrow\sqrt{\left(2x-1\right)^2}=\sqrt{\left(x-3\right)^2}\Leftrightarrow2x-1=x-3\Leftrightarrow x=-2\)
c: Ta có: \(\sqrt{x+4\sqrt{x-4}}=2\)
\(\Leftrightarrow\left|\sqrt{x-4}+2\right|=2\)
\(\Leftrightarrow x-4=0\)
hay x=4
a) \(\sqrt{x-1+2\sqrt{x-1}.1+1^2}=2;đk:x\)≥1
⇔\(\sqrt{\left(\sqrt{x-1}\right)^2+2\sqrt{x-1}.1+1^2}=2\left(hđt-1\right)\)
⇔\(\sqrt{\left(\sqrt{x-1}+1\right)^2=2}\)
⇔|\(\sqrt{x-1}+1\)|=2
⇔\(\left[{}\begin{matrix}\sqrt{x+1}-1=2\\\sqrt{x+1-1}=-2\end{matrix}\right.\)⇔\(\left[{}\begin{matrix}\sqrt{x+1}=3\\\sqrt{x+1}=-1\left(L\right)\end{matrix}\right.\)⇔x+1=9⇔x=10(TM)
→S={10}
giải phương trình:
a) \(\sqrt{x-1}=\sqrt{3x-2}+\sqrt{5x-1}\)
b) \(\sqrt{4x+1}-\sqrt{3x+4}=1\)
c) \(\sqrt{x^2-4x+4}+\sqrt{x^2-6x+9}=1\)
Giải phương trình vô tỉ :
a) \(\left(\sqrt{x+3}-\sqrt{x-1}\right)\left(x^2+\sqrt{x^2+4x+3}\right)=2x\)
b) \(\sqrt{2x+4}-2\sqrt{2-x}=\frac{6x-4}{\sqrt{x^2+4}}\)
c) \(\sqrt{3x^2-4x+2}+\sqrt{3x+1}+\sqrt{2x-1}+6x^3-7x^2-3=0\)
d) \(\sqrt{x^2+15}=3x-2+\sqrt{x^2+8}\)
Giải các phương trình:
a) \(\sqrt{x^2-3x+2}=\sqrt{x-1}\)
b) \(\sqrt{x^2-4x+4}=\sqrt{4x^2-12x+9}\)
c) \(\sqrt{x^2-5x+6}=\sqrt{x-2}\)
d) \(\sqrt{4x^2-4x+1}=\sqrt{x^2-6x+9}\)
a. ĐKXĐ: $x\geq 2$ hoặc $x=1$
PT $\Leftrightarrow \sqrt{(x-1)(x-2)}=\sqrt{x-1}$
$\Leftrightarrow \sqrt{x-1}(\sqrt{x-2}-1)=0$
\(\Leftrightarrow \left[\begin{matrix} \sqrt{x-1}=0\\ \sqrt{x-2}-1=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=1\\ x=3\end{matrix}\right.\) (đều thỏa mãn)
b.
PT $\Leftrightarrow \sqrt{(x-2)^2}=\sqrt{(2x-3)^2}$
$\Leftrightarrow |x-2|=|2x-3|$
\(\Leftrightarrow \left[\begin{matrix} x-2=2x-3\\ x-2=3-2x\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=1\\ x=\frac{5}{3}\end{matrix}\right.\)
c. ĐKXĐ: $x=2$ hoặc $x\geq 3$
PT $\Leftrightarrow \sqrt{(x-2)(x-3)}=\sqrt{x-2}$
$\Leftrightarrow \sqrt{x-2}(\sqrt{x-3}-1)=0$
\(\Leftrightarrow \left[\begin{matrix} \sqrt{x-2}=0\\ \sqrt{x-3}-1=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=2\\ x=4\end{matrix}\right.\) (đều tm)
d.
PT $\Leftrightarrow \sqrt{(2x-1)^2}=\sqrt{(x-3)^2}$
$\Leftrightarrow |2x-1|=|x-3|$
\(\Leftrightarrow \left[\begin{matrix} 2x-1=x-3\\ 2x-1=3-x\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=-2\\ x=\frac{4}{3}\end{matrix}\right.\)
a: Ta có: \(\sqrt{x^2-3x+2}=\sqrt{x-1}\)
\(\Leftrightarrow x^2-3x+2=x-1\)
\(\Leftrightarrow x^2-4x+3=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(nhận\right)\\x=3\left(nhận\right)\end{matrix}\right.\)
b: Ta có: \(\sqrt{x^2-4x+4}=\sqrt{4x^2-12x+9}\)
\(\Leftrightarrow\left|x-2\right|=\left|2x-3\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=x-2\\2x-3=-x+2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{5}{3}\end{matrix}\right.\)
c: Ta có: \(\sqrt{x^2-5x+6}=\sqrt{x-2}\)
\(\Leftrightarrow x^2-5x+6=x-2\)
\(\Leftrightarrow x^2-6x+8=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\)
Giải phương trình:
a)\(\sqrt{\sqrt{5}-\sqrt{3x}}=\sqrt{8+2\sqrt{15}}\)
b)\(\sqrt{4x-20}-3\sqrt{\dfrac{x-5}{9}}=\sqrt{1-x}\)
c) \(\sqrt{4x+8}+2\sqrt{x+2}-\sqrt{9x+18}=1\)
d) \(\sqrt{x^2-6x+9}+x=11\)
e) \(\sqrt{3x^2-4x+3}=1-2x\)
f) \(\sqrt{16\left(x+1\right)}-\sqrt{9\left(x+1\right)}=4\)
g) \(\sqrt{9x+9}+\sqrt{4x+4}=\sqrt{x+1}\)
f) Ta có: \(\sqrt{16\left(x+1\right)}-\sqrt{9\left(x+1\right)}=4\)
\(\Leftrightarrow4\left|x+1\right|-3\left|x+1\right|=4\)
\(\Leftrightarrow\left|x+1\right|=4\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=4\\x+1=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-5\end{matrix}\right.\)
g) Ta có: \(\sqrt{9x+9}+\sqrt{4x+4}=\sqrt{x+1}\)
\(\Leftrightarrow5\sqrt{x+1}-\sqrt{x+1}=0\)
\(\Leftrightarrow x+1=0\)
hay x=-1
giải phương trình :
1, \(\sqrt{4-x^2}+2\sqrt[3]{x^4-4x^3+4x^2}=\left(x-1\right)^2+1-\left|x\right|\)
2, \(2x^3+9x^2-6x\left(1+2\sqrt{6x-1}\right)+2\sqrt{6x-1}+8=0\)
3, \(x^3-3x+1=\sqrt{8-3x^2}\)
4, \(\left(4x^2+x-1\right)\sqrt{x^2+x+2}=\left(4x^2+3x+5\right)\sqrt{x^2-1}\)
5, \(\sqrt[3]{3-x^3}=2x^3+x-3\)
6, \(\sqrt[3]{x^2+3x+3}+\sqrt[3]{2x^2+3x+2}=6x^2+12x+8\)
7, \(\frac{x^2+2x-8}{x^2-2x+3}=\left(x+1\right)\left(\sqrt{x+2}-2\right)\)
8, \(\frac{4x-1}{\sqrt{4x-3}}+\frac{11-2x}{\sqrt{5-x}}=\frac{15}{2}\)
9, \(x^2-4x+14+\sqrt{x+4}=2\sqrt{1+12x}+\sqrt{1+\sqrt{1+12x}}\)
bạn đăng
vậy đến bố tổ conf biết
k thì 2 nha
1. giải các phương trình :
a/\(\sqrt{6x^2-12x+7}=x^2-2x\)
\(\frac{2}{\sqrt{3+x}}=\frac{\sqrt{3+x}}{x-1}\)
c/\(x^2+\sqrt{-x-1}=4+\sqrt{-x-1}\)
d/\(\frac{3x^2+1}{\sqrt{x-1}}=\frac{4}{\sqrt{x-1}}\)
e/\(\sqrt{-x^2+3x+4}=2x^2-6x+2\)
f/\(\frac{\sqrt{4x^2+7x-2}}{x+2}=\sqrt{2}\)
a, ĐK: \(6x^2-12x+7\ge0\) (*)
\(PT\Leftrightarrow\left\{{}\begin{matrix}x^2-2x\ge0\\6x^2-12x+7=x^4-4x^3+4x^2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x^2-2x\ge0\\x^4-4x^3-2x^2+12x-7=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2-2x\ge0\\\left(x-1\right)^2\left(x^2-2x-7\right)=0\end{matrix}\right.\) \(\Rightarrow x=1\pm2\sqrt{2}\) (thỏa mãn ĐK)
Vậy...
Giải phương trình:
1)\(\sqrt{9x^2-15x+9}+\sqrt{x^3+3x^2-3x+1}+x=2\)
2)\(\sqrt{3x^2-1}+\sqrt{x^2-x}-x\sqrt{x^2+1}=\frac{1}{2\sqrt{2}}\)
3)\(\sqrt{-4x^4y^2+16x^2y+9}-\sqrt{x^2y^2-2y^2}=2\left(x^2+\frac{1}{x^2}\right)\left(vớix>0\right)\)
4)\(x^3-3x^2+2\sqrt{\left(x+2\right)^3}-6x=0\)
5)\(4x^2-11x+10=\left(x+1\right)\sqrt{2x^2-6x+2}\)
a) \(\sqrt{4x^2-4x+1}=3\)
b)\(\sqrt{x^2-10x+25}+2-x\)
c)\(\sqrt{x^2-6x+9}+x=11\)
d)\(\sqrt{3x+19}=x+3\)
e)\(\sqrt{x^2+x+5}-1=x\)
a: =>|2x-1|=3
=>2x-1=3 hoặc 2x-1=-3
=>2x=-2 hoặc 2x=4
=>x=2 hoặc x=-1
c: \(\Leftrightarrow\left|x-3\right|=11-x\)
=>x<=11 và (x-3)^2=(11-x)^2
=>x<=11 và x^2-6x+9=x^2-22x+121
=>x<=11 và 16x=112
=>x=7
d:
ĐKXĐ: 3x+19>=0
=>x>=-19/3
PT =>x>=-3 và (3x+19)=(x+3)^2=x^2+6x+9
=>x>=-3 và x^2+6x+9-3x-19=0
=>x>=-3 và (x+5)(x-2)=0
=>x=2
e: =>\(\sqrt{x^2+x+5}=x+1\)
=>x>=-1 và x^2+x+5=x^2+2x+1
=>x>=-1 và 2x+1=x+5
=>x=4