Phân tích đa thức thành nhân tử:
(x^2+2x)^2-2x^2-4x-3
Đa thức x^3 - 2x^2 + x - xy^2 được phân tích thành nhân tử
Đa thức x^3 + 3x^2y +3xy^2 + y^3 được phân tích thành nhân tử là
Đa thức 4x(2y-z)+7y(2y-z) được phân tích thành nhân tử là:
Đa thức x^2+4x+4 được phân tích thành nhân tử là
Tìm x biết x(x-2)-x+2
\(1,=x\left(x^2-2x+1-y^2\right)=x\left[\left(x-1\right)^2-y^2\right]=x\left(x-y-1\right)\left(x+y-1\right)\\ 2,=\left(x+y\right)^3\\ 3,=\left(2y-z\right)\left(4x+7y\right)\\ 4,=\left(x+2\right)^2\\ 5,Sửa:x\left(x-2\right)-x+2=0\\ \Leftrightarrow\left(x-2\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ 9(x^2-2x-3)^4-37x^2(x^2-2x-3)^2+4x^2
phân tích đa thức thành nhân tử (thêm bớt cùng một hạng tử):
x^3 - 2x - 4
phân tích đa thức thành nhân tử (đặt biến phụ):
x^4 + 2x^3 + 5x^2 + 4x - 12
#)Giải :
\(x^3-2x-4\)
\(=x^3+2x^2-2x^2+2x-4x-4\)
\(=x^3+2x^2+2x-2x^2-4x-4\)
\(=x\left(x^2+2x+2\right)-2\left(x^2+2x+2\right)\)
\(=\left(x-2\right)\left(x^2+2x+2\right)\)
\(x^4+2x^3+5x^2+4x-12\)
\(=x^4+x^3+6x^2+x^3+x^2+6x-2x^2-2x-12\)
\(=x^2\left(x^2+x+6\right)+x\left(x^2+x+6\right)-2\left(x^2+x+6\right)\)
\(=\left(x^2+x+6\right)\left(x^2+x-2\right)\)
\(=\left(x^2+x+6\right)\left(x-1\right)\left(x+2\right)\)
Câu 1.
Đoán được nghiệm là 2.Ta giải như sau:
\(x^3-2x-4\)
\(=x^3-2x^2+2x^2-4x+2x-4\)
\(=x^2\left(x-2\right)+2x\left(x-2\right)+2\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2+2x+2\right)\)
Phân tích đa thức thành nhân tử:
\(x^4-4x^3-2x^2-3x+2\)
\(x^4-4x^3-2x^2-3x+2\)
\(\Leftrightarrow x^4+x^3-5x^3+x^2-5x^2+2x^2-5x+2x+2\)
\(\Leftrightarrow x^4+x^3+x^2-5x^3-5x^2-5x+2x^2+2x+2\)
\(\Leftrightarrow x^2\left(x^2+x+1\right)-5x\left(x^2+x+1\right)+2\left(x^2+x+1\right)\)
\(\Leftrightarrow\left(x^2-5x+2\right)\left(x^2+x+1\right)\)
Xin tick ạ !!!
phân tích đa thức thành nhân tử: x^3+2x^2+4x+3
\(x^3+2x^2+4x+3=\left(x^3+x^2\right)+\left(x^2+x\right)+\left(3x+3\right)\\ \)
\(=x^2.\left(x+1\right)+x.\left(x+1\right)+3.\left(x+1\right)=\left(x+1\right).\left(x^2+x+3\right)\)
phân tích đa thức thành nhân tử x^4+4x^3+2x^2-4x+1
\(x^4+4x^3+2x^2-4x+1\)
\(=x^4+2x^3-x^2+2x^3+4x^2-2x-x^2-2x+1\)
\(=x^2\left(x^2+2x-1\right)+2x\left(x^2+2x-1\right)-\left(x^2+2x-1\right)\)
\(=\left(x^2+2x-1\right)^2\)
tìm x biết:
(x^2+2x)^2-2x^2-4x-3=0
bài này áp dụng kiến thức phân tích đa thức thành nhân tử, mn giúp em với
\(\left(x^2+2x\right)^2-2x^2-4x-3=0\Leftrightarrow x^4+4x^3+4x^2-2x^2-4x-3=0\Leftrightarrow x^4+4x^3+2x^2-4x-3=0\Leftrightarrow\left(x-1\right)\left(x+1\right)^2\left(x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\\x=3\end{matrix}\right.\)
Ta có: \(\left(x^2+2x\right)^2-2x^2-4x-3=0\)
\(\Leftrightarrow\left(x^2+2x\right)^2-2\left(x^2+2x\right)-3=0\)
\(\Leftrightarrow\left(x^2+2x-3\right)\left(x^2+2x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)^2\cdot\left(x+3\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-3\\x=1\end{matrix}\right.\)
phân tích đa thức thành nhân tử bằng cácphương pháp đã học(đặt nhân tử chung; dùng những hằng đẳng thức; nhóm nhiều hạng tử ; đa thức bậc 2)
a, x^3 - 2x + 4
b, x^3 - 4x^2 + 12x - 27
c, x^2 - 2x^2 + 2x + 1
a: \(x^3-2x+4\)
\(=x^3+2x^2-2x^2-4x+2x+4\)
\(=\left(x+2\right)\left(x^2-2x+2\right)\)
b: \(x^3-4x^2+12x-27\)
\(=\left(x-3\right)\left(x^2+3x+9\right)-4x\left(x-3\right)\)
\(=\left(x-3\right)\left(x^2-x+9\right)\)
c: \(x^3+2x^2+2x+1\)
\(=\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2+x+1\right)\)
Bài 1. Phân tích đa thức 2x – 4y thành nhân tử được kết quả là:
A.2(x – 2y) B. 2( x + y) C. 4(2x – y) D. 2(x + 2y)
Bài 2. Phân tích đa thức 4x2 – 4xy thành nhân tử được kết quả là:
A.4(x2 – xy) B. x(4x – 4y) C. 4x(x – y) D. 4xy(x – y)
Bài 3. Tại x = 99 giá trị biểu thức x2 + x là:
A.990 B. 9900 C. 9100 D. 99000
Bài 4. Các giá trị của x thỏa mãn biểu thức x2 – 12x = 0 là:
A.x = 0 B. x = 12 C. x = 0 và x = 12 D. x = 11
Giúp mik với mik cảm ơn
Phân tích đa thức thành nhân tử:
B = ( x2 + 2x)2 - 2x2 - 4x - 3
\(B=\left(x^2+2x\right)-2x^2-4x-3\)
\(=\left(x^2+2x\right)^2-2\left(x^2+2x\right)-3\) \(\left(1\right)\)
Đặt \(x^2+2x=t\) , khi đó \(\left(1\right)\Leftrightarrow t^2-2t-3=\left(t+1\right)\left(t-3\right)=\left(x^2+2x+1\right)\left(x^2+2x-3\right)=\left(x+1\right)^2\left(x-1\right)\left(x+3\right)\)