Tìm nghiệm nguyên khác 0 của phương trình sau:
2x3+x2y-x2+2x+y+4=0
tìm nghiệm nguyên của phương trình : x3 - x2y + 3x -2y - 5 = 0
Lời giải:
PT $\Leftrightarrow x^3+3x-5=x^2y+2y=y(x^2+2)$
$\Rightarrow y=\frac{x^3+3x-5}{x^2+2}$
Để $y$ nguyên thì $x^3+3x-5\vdots x^2+2$
$\Leftrightarrow x(x^2+2)+x-5\vdots x^2+2$
$\Leftrightarrow x-5\vdots x^2+2(1)$
$\Rightarrow x^2-5x\vdots x^2+2$
$\Leftrightarrow x^2+2-(5x+2)\vdots x^2+2$
$\Leftrightarrow 5x+2\vdots x^2+2(2)$
Từ $(1);(2)\Rightarrow 5(x-5)-(5x+2)\vdots x^2+2$
$\Leftrightarrow 27\vdots x^2+2$. Do $x^2+2\geq 2$ nên:
$\Rightarrow x^2+2\in\left\{3;9;27\right\}$
$\Rightarrow x^2\in\left\{1;7;25\right\}$
Do $x$ nguyên nên $x\in\left\{\pm 1; \pm 5\right\}$
Thay vào $y$ ta tìm được:
$x=-1\Rightarrow y=-3$
$x=5\Rightarrow y=5$
Nếu (x;y) là nghiệm của phương trình x 2 y − x 2 + 2 x y − x + 2 y − 1 = 0 thì tổng giá trị nhỏ nhất và giá trị lớn nhất của y là:
A. 2
B. 3
C. 3/3
D. 1
Đáp án A
y − 1 x 2 + 2 y − 1 x + 2 y − 1 = 0 1
Nếu y = 1 thì x = 1
Nếu y ≠ 1 thì để (1) có nghiệm thì
Δ = 2 y − 1 2 + 4 y − 1 2 y − 1 ≥ 0 ⇔ 2 y − 1 3 − 2 y ≥ 0 ⇔ 1 2 ≤ y ≤ 3 2
⇒ min y = 1 2 ; max y = 3 2 ⇒ min y + max y = 2
Các cặp nghiệm khác (0; 0) của hệ phương trình x 2 = 3 x + 2 y y 2 = 3 y + 2 x
A. (5; 5)
B. (5; 5), (1; −2), (−2; 1)
C. (5; 5), (1; 2), (2; 1)
D. (5; 5); (−1; 2), (2; −1)
Tìm nghiệm nguyên x,y của phương trình biết:
3x .x2 -4y2 -4y=0
Lời giải:
$3^x.x^2=4y(y+1)$ nên $x$ chẵn. Đặt $x=2a$ ta có:
$3^{2a}.a^2=y(y+1)\Leftrightarrow (3^a.a)^2=y(y+1)$
Dễ thấy $(y,y+1)=1$ nên để tích của chúng là scp thì $y,y+1$ là scp.
Đặt $y=m^2; y+1=n^2$ với $m,n$ tự nhiên.
$\Rightarrow 1=(n-m)(n+m)$
$\Rightarrow n=1; m=0\Rightarrow y=0\Rightarrow x=0$
Số cặp nghiệm khác (0 ; 0) của hệ phương trình x 2 = 5 x - 2 y y 2 = 5 y - 2 x là :
A. 0
B. 1
C. 3
D. 2
1: cho phương trình x^2-(m+2)x+m^2-1=0
a, gọi x1 và x2 là nghiệm của phương trình. tìm m thỏa mãn x1-x2=2
b, tìm giá trị nguyên nhỏ nhất của m để phương trình có hai nghiệm khác nhau
Cho phương trình x²-2x+m-3=0 a) tìm điều kiện của m để phương trình có nghiệm số b)tìm m để phương trình trên có 2 nghiệm x1;x2 thỏa điều kiện x1-x2=4
a: Để phương trình có nghiệm thì (-2)^2-4(m-3)>=0
=>4-4m+12>=0
=>-4m+16>=0
=>-4m>=-16
=>m<=4
b: x1-x2=4
x1+x2=2
=>x1=3; x2=-1
x1*x2=m-3
=>m-3=-3
=>m=0(nhận)
ính giá trị của biểu thức sau:
H=2x(x2y+xy)−(2x2+y)(xy−x2)+x(y2−2x3−3xy)+18H=2x(x2y+xy)−(2x2+y)(xy−x2)+x(y2−2x3−3xy)+18
Giá trị của biểu thức H = ???
giúp mình vs cần gấp ....mình sẽ hậu tạ
1 Trong các phương trình sau, phương trình nào vô nghiệm:
A. x2 – 2x + 2 = 0 B. x2 – 2x + 1 = 0
C. x2 – 2x = 0 D. 2x – 10 = 2x – 10
2 Phương trình nào sau đây có 1 nghiệm :
A. x2 – 3 x = 0 B. 2x + 1 =1 +2x
C. x ( x – 1 ) = 0 D. (x + 2)(x2 + 1) = 0
Tìm các nghiệm x ∈ 0 ; π 2 của phương trình sau
4 sin 2 π - x 2 - 3 π 2 - 2 x = 1 + 2 cos 2 x - 3 π 4
A. x = 5 π 8
B. x ∈ 5 π 18 ; 7 π 18
C. x = 7 π 18
D. x ∈ ∅
Ta có:
4 sin 2 π - x 2 - 3 π 2 - 2 x = 1 + 2 cos 2 x - 3 π 4 ⇔ 2 1 - cos 2 π - x - 3 cos 2 x = 1 + 1 + cos 2 x - 3 π 2 ⇔ 2 - 2 cos x - 3 cos 2 x = 2 - sin 2 x ⇔ sin 2 x - 3 cos 2 x = 2 cos x ⇔ 1 2 sin 2 x - 3 2 cos 2 x = cos x ⇔ sin 2 x - π 3 = cos π 3 - x ⇔ x = 5 π 8 + k 2 π 3 x = 5 π 6 + k 2 π
Vì x ∈ 0 ; π 2 nên ta chọn được nghiệm x = 5 π 8
Đáp án A