Cho a,b,c>0 .CMR\(\frac{a}{\sqrt{b}-1}+\frac{b}{\sqrt{c}-1}+\frac{c}{\sqrt{a}-1}\ge12\)
cho a,b,c>1. Cmr: \(\frac{a}{\sqrt{b}-1}+\frac{b}{\sqrt{c}-1}+\frac{c}{\sqrt{a}-1}\ge12\)
Ta có \(\frac{a}{\sqrt{b}-1}+4\left(\sqrt{b}-1\right)\ge4\sqrt{a}\)
\(\frac{b}{\sqrt{c}-1}+4\left(\sqrt{c}-1\right)\ge4\sqrt{b}\)
\(\frac{c}{\sqrt{a}-1}+4\left(\sqrt{a}-1\right)\ge4\sqrt{c}\)
Cộng các vế của 3 BĐT trên
=> ĐPCM
Dấu bằng xảy ra khi a=b=c=4
cho a,b,c >1 cmr :
\(\frac{a}{\sqrt{b}-1}+\frac{b}{\sqrt{c}-1}+\frac{c}{\sqrt{a}-1}\ge12\)
cho a,b,c>0. CMR: \(\frac{1}{a\sqrt{a+b}}+\frac{1}{b\sqrt{b+c}}+\frac{1}{c\sqrt{c+a}}\ge\frac{3}{\sqrt{2abc}}\)
Bài 1: Cho a,b,c là đọ dài 3 cạnh của một tam giác. CMR: \(\frac{1}{\sqrt{b+c-a}}+\frac{1}{\sqrt{a+c-b}}+\frac{1}{\sqrt{a+b-c}}\ge\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}.\)
Bài 2: Cho a,b,c >0. CMR: \(abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(a+c-b\right).\)
Đặt ⎧⎪⎨⎪⎩a+b−c=xb+c−a=yc+a−b=z(x,y,z>0){a+b−c=xb+c−a=yc+a−b=z(x,y,z>0)
⇒⎧⎪ ⎪ ⎪⎨⎪ ⎪ ⎪⎩a=z+x2b=x+y2c=y+z2⇒{a=z+x2b=x+y2c=y+z2
⇒√a(1b+c−a−1√bc)=√2(z+x)2(1y−2√(x+y)(y+z))≥√x+√z2(1y−2√xy+√yz)=√x+√z2y−1√y⇒a(1b+c−a−1bc)=2(z+x)2(1y−2(x+y)(y+z))≥x+z2(1y−2xy+yz)=x+z2y−1y
Tương tự
⇒∑√a(1b+c−a−1√bc)≥∑√x+√z2y−∑1√y⇒∑a(1b+c−a−1bc)≥∑x+z2y−∑1y
⇒VT≥∑[x√x(y+z)]2xyz−∑√xy√xyz≥2√xyz(x+y+z)2xyz−x+y+z√xyz≐x+y+z√xyz−x+y+z√xyz=0⇒VT≥∑[xx(y+z)]2xyz−∑xyxyz≥2xyz(x+y+z)2xyz−x+y+zxyz≐x+y+zxyz−x+y+zxyz=0
(∑√xy≤x+y+z,x√x(y+z)≥2x√xyz)(∑xy≤x+y+z,xx(y+z)≥2xxyz)
dấu = ⇔x=y=z⇔a=b=c
Mai Anh ! cậu giỏi quá, cậu nè :33
Ha~ Idol về mảng copy nay giỏi quá lè:33. Tác hại của việc copy paste là đây
Lần sai copy paste nhớ nhìn lại với chỉnh sửa đi nhá. Ko để này lộ liễu bôi bác lắm
Copy always mà vẫn 50k giải tuần đấy, ghê=))
Cho a,b > 0, c ≠ 0. CMR:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Leftrightarrow\sqrt{a+b}=\sqrt{a+c}+\sqrt{b+c}\)
Lời giải:
Ta có:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
\(\Leftrightarrow ab+bc+ac=0(*)\).
Từ $(*)$ ta thấy: \(c=\frac{-ab}{a+b}< 0\) do $a,b>0$
\(c+a=\frac{-ac}{b}>0\) do $c< 0; a,b>0$
\(c+b=\frac{-bc}{a}>0\) do $c< 0; a,b>0$
Do đó:
\((*)\Leftrightarrow c^2+ab+bc+ac=c^2\)
\(\Leftrightarrow (c+a)(c+b)=c^2\)
\(\Leftrightarrow \sqrt{(c+a)(c+b)}=|c|=-c\)
\(\Leftrightarrow 2\sqrt{(c+a)(c+b)}+2c=0\)
\(\Leftrightarrow (c+a)+(c+b)+2\sqrt{(c+a)(c+b)}=a+b\)
\(\Leftrightarrow (\sqrt{c+a}+\sqrt{c+b})^2=a+b\)
\(\Leftrightarrow \sqrt{c+a}+\sqrt{c+b}=\sqrt{a+b}\) (đpcm)
Cho a, b, b>1, chứng minh rằng:
\(\frac{a}{\sqrt{b}-1}+\frac{b}{\sqrt{c}-1}+\frac{c}{\sqrt{a}-1}\ge12\) \(12\)
Đẳng thức xảy ra khi nào ?
\(\frac{a}{\sqrt{b}-1}+\frac{b}{\sqrt{c}-1}+\frac{c}{\sqrt{c}-1}\ge\frac{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2}{\sqrt{a}+\sqrt{b}+\sqrt{c}-3}=\frac{t^2}{t-3}=12.,\)
\(t^2-12t+36=0\Leftrightarrow t=6;.\)
=>a =b =c = 4
cảm ơn bạn nhưng mình giải ra rồi :33 cách của bạn tìm a, b, c sai
Cho a, b, c > 0 thỏa mãn a + b = 2c. CMR \(\frac{1}{\sqrt{a}+\sqrt{c}}+\frac{1}{\sqrt{b}+\sqrt{c}}=\frac{2}{\sqrt{a}+\sqrt{b}}\)
Qui đồng chứng minh tương đương là ra
\(a+b=2c\Rightarrow\left\{{}\begin{matrix}c=\frac{a+b}{2}\\a-c=c-b\end{matrix}\right.\)
\(\frac{1}{\sqrt{a}+\sqrt{c}}+\frac{1}{\sqrt{b}+\sqrt{c}}=\frac{\sqrt{a}-\sqrt{c}}{a-c}+\frac{\sqrt{b}-\sqrt{c}}{b-c}=\frac{\sqrt{a}-\sqrt{c}}{a-c}-\frac{\sqrt{b}-\sqrt{c}}{a-c}\)
\(=\frac{\sqrt{a}-\sqrt{b}}{a-c}=\frac{\sqrt{a}-\sqrt{b}}{a-\frac{a+b}{2}}=\frac{2\left(\sqrt{a}-\sqrt{b}\right)}{a-b}=\frac{2}{\sqrt{a}+\sqrt{b}}\)
Cách khác.
Đặt \(x=\frac{1}{\sqrt{a}+\sqrt{c}};y=\frac{1}{\sqrt{b}+\sqrt{c}};z=\frac{1}{\sqrt{a}+\sqrt{b}}\)(*)
Cần chứng minh \(x+y=2z\)
(*)\(\Leftrightarrow\frac{1}{x}=\sqrt{a}+\sqrt{c};\frac{1}{y}=\sqrt{b}+\sqrt{c};\frac{1}{z}=\sqrt{a}+\sqrt{b}\)
Cộng vế :
\(2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
\(\Leftrightarrow2\cdot\left(\frac{1}{x}+\sqrt{a}\right)=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
\(\Leftrightarrow a=\frac{1}{4}\cdot\left(\frac{1}{y}+\frac{1}{z}-\frac{1}{x}\right)^2\)
Tương tự :
\(b=\frac{1}{4}\cdot\left(\frac{1}{x}-\frac{1}{y}+\frac{1}{z}\right)^2\)
\(c=\frac{1}{4}\cdot\left(\frac{1}{x}+\frac{1}{y}-\frac{1}{z}\right)^2\)
Theo giả thiết : \(a+b=2c\)
\(\Leftrightarrow\frac{1}{2}\cdot\left(\frac{1}{x}-\frac{1}{y}+\frac{1}{z}\right)^2=\frac{1}{4}\cdot\left[\left(\frac{1}{y}+\frac{1}{z}-\frac{1}{x}\right)^2+\left(\frac{1}{x}+\frac{1}{y}-\frac{1}{z}\right)^2\right]\)
\(\Leftrightarrow\frac{4}{xy}-\frac{2}{yz}-\frac{2}{zx}=0\)
\(\Leftrightarrow\frac{2}{xy}=\frac{1}{yz}+\frac{1}{zx}\)
\(\Leftrightarrow\frac{2z}{xyz}=\frac{x+y}{xyz}\)
\(\Leftrightarrow2z=x+y\) ( đpcm )
cho a,b >0, c khác 0. CMR:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Leftrightarrow\sqrt{a+b}=\sqrt{a+c}+\sqrt{b+c}\)
cho a,b,c>=0 và b=\(\frac{a+c}{2}\)
cmr: \(\frac{1}{\sqrt{a}+\sqrt{b}}+\frac{1}{\sqrt{b}+\sqrt{c}}=\frac{2}{\sqrt{a}+\sqrt{c}}\)
Nhìn đề thấy mệt nên sửa lại đỡ mệt.
Cho \(\hept{\begin{cases}a,b,c\ge0\\b^2=\frac{a^2+c^2}{2}\end{cases}}\)
Chứng minh rằng: \(\frac{1}{a+b}+\frac{1}{b+c}=\frac{2}{c+a}\)
Giải:
Theo đề ta có:
\(b^2=\frac{a^2+c^2}{2}\)
\(\Leftrightarrow b^2-a^2=c^2-b^2\)
\(\Leftrightarrow\left(b+a\right)\left(b-a\right)=\left(c+b\right)\left(c-b\right)\)
\(\Leftrightarrow\frac{b-a}{b+c}=\frac{c-b}{a+b}\)
Ta cần chứng minh:
\(\frac{1}{a+b}+\frac{1}{b+c}=\frac{2}{c+a}\)
\(\Leftrightarrow\left(\frac{1}{a+b}-\frac{1}{c+a}\right)+\left(\frac{1}{b+c}-\frac{1}{c+a}\right)=0\)
\(\Leftrightarrow\frac{c-b}{\left(a+b\right)\left(c+a\right)}+\frac{a-b}{\left(b+c\right)\left(c+a\right)}=0\)
\(\Leftrightarrow\frac{b-a}{\left(b+c\right)\left(c+a\right)}+\frac{a-b}{\left(b+c\right)\left(c+a\right)}=0\)
\(\Leftrightarrow\frac{b-a+a-b}{\left(b+c\right)\left(c+a\right)}=0\)
\(\Leftrightarrow0=0\)
Vậy....