Những câu hỏi liên quan
dbrby
Xem chi tiết
Trần Phúc Khang
4 tháng 7 2019 lúc 16:03

Ta có \(\frac{a}{\sqrt{b}-1}+4\left(\sqrt{b}-1\right)\ge4\sqrt{a}\)

\(\frac{b}{\sqrt{c}-1}+4\left(\sqrt{c}-1\right)\ge4\sqrt{b}\)

\(\frac{c}{\sqrt{a}-1}+4\left(\sqrt{a}-1\right)\ge4\sqrt{c}\)

Cộng các vế của 3 BĐT trên

=> ĐPCM

Dấu bằng xảy ra khi a=b=c=4

Bình luận (0)
Nguyễn Mỹ Hạnh
Xem chi tiết
Nguyễn Thu Ngà
Xem chi tiết
Tiến Nguyễn Minh
Xem chi tiết
Phạm Thị Mai Anh
28 tháng 7 2020 lúc 20:23

Đặt ⎧⎪⎨⎪⎩a+b−c=xb+c−a=yc+a−b=z(x,y,z>0){a+b−c=xb+c−a=yc+a−b=z(x,y,z>0)

⇒⎧⎪ ⎪ ⎪⎨⎪ ⎪ ⎪⎩a=z+x2b=x+y2c=y+z2⇒{a=z+x2b=x+y2c=y+z2

⇒√a(1b+c−a−1√bc)=√2(z+x)2(1y−2√(x+y)(y+z))≥√x+√z2(1y−2√xy+√yz)=√x+√z2y−1√y⇒a(1b+c−a−1bc)=2(z+x)2(1y−2(x+y)(y+z))≥x+z2(1y−2xy+yz)=x+z2y−1y
Tương tự

⇒∑√a(1b+c−a−1√bc)≥∑√x+√z2y−∑1√y⇒∑a(1b+c−a−1bc)≥∑x+z2y−∑1y

⇒VT≥∑[x√x(y+z)]2xyz−∑√xy√xyz≥2√xyz(x+y+z)2xyz−x+y+z√xyz≐x+y+z√xyz−x+y+z√xyz=0⇒VT≥∑[xx(y+z)]2xyz−∑xyxyz≥2xyz(x+y+z)2xyz−x+y+zxyz≐x+y+zxyz−x+y+zxyz=0

(∑√xy≤x+y+z,x√x(y+z)≥2x√xyz)(∑xy≤x+y+z,xx(y+z)≥2xxyz)

dấu = ⇔x=y=z⇔a=b=c

Bình luận (0)
 Khách vãng lai đã xóa
๖²⁴ʱんuリ イú❄✎﹏
28 tháng 7 2020 lúc 20:26

Mai Anh ! cậu giỏi quá, cậu nè :33 

Bình luận (0)
 Khách vãng lai đã xóa
Chủ acc bị dính lời nguy...
28 tháng 7 2020 lúc 20:29

Ha~ Idol về mảng copy nay giỏi quá lè:33. Tác hại của việc copy paste là đây

Lần sai copy paste nhớ nhìn lại với chỉnh sửa đi nhá. Ko để này lộ liễu bôi bác lắm

Copy always mà vẫn 50k giải tuần đấy, ghê=))

Bình luận (0)
 Khách vãng lai đã xóa
Nguyễn Khắc Tùng Lâm
Xem chi tiết
Akai Haruma
19 tháng 7 2019 lúc 11:19

Lời giải:

Ta có:

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)

\(\Leftrightarrow ab+bc+ac=0(*)\).

Từ $(*)$ ta thấy: \(c=\frac{-ab}{a+b}< 0\) do $a,b>0$

\(c+a=\frac{-ac}{b}>0\) do $c< 0; a,b>0$

\(c+b=\frac{-bc}{a}>0\) do $c< 0; a,b>0$

Do đó:

\((*)\Leftrightarrow c^2+ab+bc+ac=c^2\)

\(\Leftrightarrow (c+a)(c+b)=c^2\)

\(\Leftrightarrow \sqrt{(c+a)(c+b)}=|c|=-c\)

\(\Leftrightarrow 2\sqrt{(c+a)(c+b)}+2c=0\)

\(\Leftrightarrow (c+a)+(c+b)+2\sqrt{(c+a)(c+b)}=a+b\)

\(\Leftrightarrow (\sqrt{c+a}+\sqrt{c+b})^2=a+b\)

\(\Leftrightarrow \sqrt{c+a}+\sqrt{c+b}=\sqrt{a+b}\) (đpcm)

Bình luận (1)
Trần Nguyễn Quy
Xem chi tiết
Nguyễn Thị Thùy Dương
10 tháng 1 2017 lúc 17:03

\(\frac{a}{\sqrt{b}-1}+\frac{b}{\sqrt{c}-1}+\frac{c}{\sqrt{c}-1}\ge\frac{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2}{\sqrt{a}+\sqrt{b}+\sqrt{c}-3}=\frac{t^2}{t-3}=12.,\)

\(t^2-12t+36=0\Leftrightarrow t=6;.\)

=>a =b =c = 4

Bình luận (0)
Trần Nguyễn Quy
10 tháng 1 2017 lúc 13:56

\(\ge12\)nhé, đánh nhầm 

Bình luận (0)
Trần Nguyễn Quy
11 tháng 1 2017 lúc 8:28

cảm ơn bạn nhưng mình giải ra rồi :33 cách của bạn tìm a, b, c sai 

Bình luận (0)
Đẹp Trai Không Bao Giờ S...
Xem chi tiết
Trần Quang Hưng
22 tháng 9 2019 lúc 22:20

Qui đồng chứng minh tương đương là ra

Bình luận (0)
Nguyễn Việt Lâm
22 tháng 9 2019 lúc 22:22

\(a+b=2c\Rightarrow\left\{{}\begin{matrix}c=\frac{a+b}{2}\\a-c=c-b\end{matrix}\right.\)

\(\frac{1}{\sqrt{a}+\sqrt{c}}+\frac{1}{\sqrt{b}+\sqrt{c}}=\frac{\sqrt{a}-\sqrt{c}}{a-c}+\frac{\sqrt{b}-\sqrt{c}}{b-c}=\frac{\sqrt{a}-\sqrt{c}}{a-c}-\frac{\sqrt{b}-\sqrt{c}}{a-c}\)

\(=\frac{\sqrt{a}-\sqrt{b}}{a-c}=\frac{\sqrt{a}-\sqrt{b}}{a-\frac{a+b}{2}}=\frac{2\left(\sqrt{a}-\sqrt{b}\right)}{a-b}=\frac{2}{\sqrt{a}+\sqrt{b}}\)

Bình luận (0)
Trần Thanh Phương
22 tháng 9 2019 lúc 22:43

Cách khác.

Đặt \(x=\frac{1}{\sqrt{a}+\sqrt{c}};y=\frac{1}{\sqrt{b}+\sqrt{c}};z=\frac{1}{\sqrt{a}+\sqrt{b}}\)(*)

Cần chứng minh \(x+y=2z\)

(*)\(\Leftrightarrow\frac{1}{x}=\sqrt{a}+\sqrt{c};\frac{1}{y}=\sqrt{b}+\sqrt{c};\frac{1}{z}=\sqrt{a}+\sqrt{b}\)

Cộng vế :

\(2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)

\(\Leftrightarrow2\cdot\left(\frac{1}{x}+\sqrt{a}\right)=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)

\(\Leftrightarrow a=\frac{1}{4}\cdot\left(\frac{1}{y}+\frac{1}{z}-\frac{1}{x}\right)^2\)

Tương tự :

\(b=\frac{1}{4}\cdot\left(\frac{1}{x}-\frac{1}{y}+\frac{1}{z}\right)^2\)

\(c=\frac{1}{4}\cdot\left(\frac{1}{x}+\frac{1}{y}-\frac{1}{z}\right)^2\)

Theo giả thiết : \(a+b=2c\)

\(\Leftrightarrow\frac{1}{2}\cdot\left(\frac{1}{x}-\frac{1}{y}+\frac{1}{z}\right)^2=\frac{1}{4}\cdot\left[\left(\frac{1}{y}+\frac{1}{z}-\frac{1}{x}\right)^2+\left(\frac{1}{x}+\frac{1}{y}-\frac{1}{z}\right)^2\right]\)

\(\Leftrightarrow\frac{4}{xy}-\frac{2}{yz}-\frac{2}{zx}=0\)

\(\Leftrightarrow\frac{2}{xy}=\frac{1}{yz}+\frac{1}{zx}\)

\(\Leftrightarrow\frac{2z}{xyz}=\frac{x+y}{xyz}\)

\(\Leftrightarrow2z=x+y\) ( đpcm )

Bình luận (0)
Mạnh Nguyễn Đức
Xem chi tiết
Hồ Trâm Anh
4 tháng 7 2016 lúc 10:24

Khó nhỉ

Bình luận (0)
Mạnh Nguyễn Đức
5 tháng 7 2016 lúc 8:52

khó thì mình mới nhờ các bạn chứ

Bình luận (0)
tống thị quỳnh
Xem chi tiết
alibaba nguyễn
25 tháng 5 2017 lúc 14:20

Nhìn đề thấy mệt nên sửa lại đỡ mệt.

Cho \(\hept{\begin{cases}a,b,c\ge0\\b^2=\frac{a^2+c^2}{2}\end{cases}}\)

Chứng minh rằng: \(\frac{1}{a+b}+\frac{1}{b+c}=\frac{2}{c+a}\)

Giải:

Theo đề ta có:

\(b^2=\frac{a^2+c^2}{2}\)

\(\Leftrightarrow b^2-a^2=c^2-b^2\)

\(\Leftrightarrow\left(b+a\right)\left(b-a\right)=\left(c+b\right)\left(c-b\right)\)

\(\Leftrightarrow\frac{b-a}{b+c}=\frac{c-b}{a+b}\)

Ta cần chứng minh:

\(\frac{1}{a+b}+\frac{1}{b+c}=\frac{2}{c+a}\)

\(\Leftrightarrow\left(\frac{1}{a+b}-\frac{1}{c+a}\right)+\left(\frac{1}{b+c}-\frac{1}{c+a}\right)=0\)

\(\Leftrightarrow\frac{c-b}{\left(a+b\right)\left(c+a\right)}+\frac{a-b}{\left(b+c\right)\left(c+a\right)}=0\)

\(\Leftrightarrow\frac{b-a}{\left(b+c\right)\left(c+a\right)}+\frac{a-b}{\left(b+c\right)\left(c+a\right)}=0\)

\(\Leftrightarrow\frac{b-a+a-b}{\left(b+c\right)\left(c+a\right)}=0\)

\(\Leftrightarrow0=0\)

Vậy....

Bình luận (0)